Dealing with Missing Data

Challenges and Solutions

Nicole Erler

Department of Biostatistics, Erasmus Medical Center

≥ n.erler@erasmusmc.nl

♥ N_Erler ♥ www.nerler.com ♥ NErler

13 January 2020

Handling Missing Values is Easy!

Functions automatically exclude missing values:

[...]
Residual standard error: 2.305 on 69 degrees of freedom
(25 observations deleted due to missingness)
Multiple R-squared: 0.09255, Adjusted R-squared: 0.02679
F-statistic: 1.407 on 5 and 69 DF, p-value: 0.2325

Handling Missing Values is Easy!

Functions automatically exclude missing values:

```
## [...]
## Residual standard error: 2.305 on 69 degrees of freedom
## (25 observations deleted due to missingness)
## Multiple R-squared: 0.09255, Adjusted R-squared: 0.02679
## F-statistic: 1.407 on 5 and 69 DF, p-value: 0.2325
```

Imputation is super easy:

library("mice")
imp <- mice(mydata)</pre>

However ...

Complete case analysis is usually biased

Complete case analysis is usually biased

(Imputation) methods make certain assumptions, e.g.:

missingness is M(C)AR

Complete case analysis is usually biased

(Imputation) methods make certain assumptions, e.g.:

- missingness is M(C)AR
- the incomplete variable has a certain conditional distribution (e.g. normal)

Complete case analysis is usually biased

(Imputation) methods make certain assumptions, e.g.:

- missingness is M(C)AR
- the incomplete variable has a certain conditional distribution (e.g. normal)
- ► all associations are linear

Complete case analysis is usually biased

(Imputation) methods make certain assumptions, e.g.:

- missingness is M(C)AR
- the incomplete variable has a certain conditional distribution (e.g. normal)
- ► all associations are **linear**
- compatibility and congeniality

Complete case analysis is usually biased

(Imputation) methods make certain assumptions, e.g.:

- missingness is M(C)AR
- the incomplete variable has a certain conditional distribution (e.g. normal)
- ► all associations are linear
- compatibility and congeniality

violation = bias

Remind me, how did that imputation thing work again???

Imputation

Imputation

filling in missing values with (good) "guesses"

Imputation

Imputation

filling in missing values with (good) "guesses"

Important:

Missing values → **uncertainty** This needs to be taken into account!!!

Imputation

Imputation

filling in missing values with (good) "guesses"

Important:

Missing values **→ uncertainty** This needs to be taken into account!!!

Donald Rubin (in the 1970s):

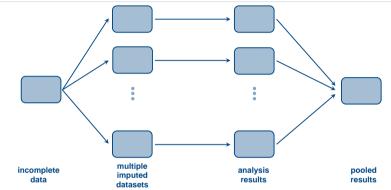
Represent each missing value with multiple imputed values

Multiple Imputation

Note:

Imputation is not the only approach to handle missing values. (Also: maximum likelihood, inverse probability weighting, ...)

Multiple Imputation



- 1. Imputation: impute multiple times = multiple completed datasets
- 2. Analysis: analyse each of the datasets
- 3. Pooling: combine results, taking into account additional uncertainty

Imputation Step

Two main approaches

Joint Model Multiple Imputation

- ▶ the "original" approach
- often using a multivariate normal distribution

Imputation Step

Two main approaches

Joint Model Multiple Imputation

- ▶ the "original" approach
- often using a multivariate normal distribution

Multiple Imputation with Chained Equations (MICE)

- also: Fully Conditional Specification (FCS)
- now often considered the gold standard

For each incomplete variable, specify a model using all other variables:

full conditionals

<i>x</i> ₂	X_3	X_4	
\checkmark	NA	NA	
\checkmark	\checkmark	NA	
NA	NA	\checkmark	
:	:	:	
	✓ ✓	✓ NA ✓ ✓	✓ NA NA ✓ ✓ NA

For each incomplete variable, specify a model using all other variables:

full conditionals

:

x_1	<i>x</i> ₂	X_3	X_4	
\checkmark	\checkmark	NA	NA	
NA	\checkmark	\checkmark	NA	
\checkmark	NA	NA	\checkmark	
:	:	:	:	

$x_1 \sim x_2 + x_3 + x_4 + \dots$
$x_2 \sim x_1 + x_3 + x_4 + \dots$
$x_3 \sim x_1 + x_2 + x_4 + \dots$
$x_4 \sim x_1 + x_2 + x_3 + \dots$

For each incomplete variable, specify a model using all other variables:

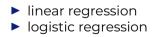
full conditionals

;

x_1	<i>x</i> ₂	X ₃	X_4	
\checkmark	\checkmark	NA	NA	
NA	\checkmark	\checkmark	NA	
\checkmark	NA	NA	\checkmark	
÷	÷	÷	÷	

For example:

...



 $x_1 \sim x_2 + x_3 + x_4 + \dots$ $x_2 \sim x_1 + x_3 + x_4 + \dots$ $x_3 \sim x_1 + x_2 + x_4 + \dots$ $x_4 \sim x_1 + x_2 + x_3 + \dots$

MICE is an iterative algorithm:

start with initial guess

x_1	<i>x</i> ₂	X3	X_4	
\checkmark	\checkmark	NA	NA	
NA	\checkmark	\checkmark	NA	
\checkmark	NA	NA	\checkmark	
÷	÷	÷	÷	

MICE is an iterative algorithm:

- start with initial guess
- update x_1 based on initial values of x_2, x_3, x_4, \ldots

x_1	<i>x</i> ₂	X3	X_4	
\checkmark	\checkmark	NA	NA	
NA	\checkmark	\checkmark	NA	
\checkmark	NA	NA	\checkmark	
:	:	:	:	

MICE is an iterative algorithm:

start with initial guess

▶ ...

- update x₁ based on initial values of x₂, x₃, x₄,...
- update x_2 based on new x_1 and initial values of x_3, x_4, \ldots

x_1	<i>x</i> ₂	X3	<i>X</i> 4	
\checkmark	\checkmark	NA	NA	
NA	\checkmark	\checkmark	NA	
\checkmark	NA	NA	\checkmark	
÷	÷	÷	÷	

MICE is an iterative algorithm:

- start with initial guess
- update x₁ based on initial values of x₂, x₃, x₄,...
- update x_2 based on new x_1 and initial values of x_3, x_4, \ldots

▶ ...

• update x_1 again, based on updated x_2, x_3, x_4, \dots

▶ ...

x_1	<i>x</i> ₂	X3	<i>X</i> 4	
\checkmark	\checkmark	NA	NA	
NA	\checkmark	\checkmark	NA	
\checkmark	NA	NA	\checkmark	
:	:	:	:	
:	:	:	:	

MICE is an iterative algorithm:

- start with initial guess
- update x₁ based on initial values of x₂, x₃, x₄,...
- update x₂ based on new x₁ and initial values of x₃, x₄,...

▶ ...

• update x_1 again, based on updated x_2, x_3, x_4, \ldots

▶ ...

until convergence

x_1	<i>x</i> ₂	X3	<i>X</i> 4	
\checkmark	\checkmark	NA	NA	
NA	\checkmark	\checkmark	NA	
\checkmark	NA	NA	\checkmark	
:	:	:	:	

MICE is an iterative algorithm:

- start with initial guess
- update x₁ based on initial values of x₂, x₃, x₄,...
- update x₂ based on new x₁ and initial values of x₃, x₄,...

```
▶ ...
```

update x₁ again, based on updated x₂, x₃, x₄,...

▶ ...

until convergence

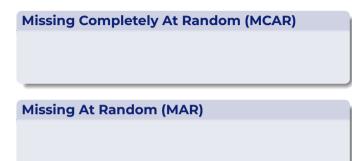
Values from last iteration = one imputed dataset

x_1	<i>x</i> ₂	X3	X_4	
\checkmark	\checkmark	NA	NA	
NA	\checkmark	\checkmark	NA	
\checkmark	NA	NA	\checkmark	
:	:	:	:	

(Imputation) methods make certain assumptions, e.g.:

missingness is M(C)AR

- the incomplete variable has a certain conditional distribution (e.g. normal)
- ► all associations are linear
- compatibility and congeniality



Missing Not At Random (MNAR)

Missing Completely At Random (MCAR)

 $p(R \mid X_{obs}, X_{mis}) = p(R)$

Missingness is independent of all data.

Missing At Random (MAR)

Missing Not At Random (MNAR)

questionnaire got lost in mail

Missing Completely At Random (MCAR)

 $p(R \mid X_{obs}, X_{mis}) = p(R)$

Missingness is independent of all data.

Missing At Random (MAR)

 $p(R \mid X_{obs}, X_{mis}) = p(R \mid X_{obs})$

Missingness depends only on observed data.

questionnaire got lost in mail

overweight participants are less likely to report their chocolate consumption (and we know their weight)

Missing Not At Random (MNAR)

Missing Completely At Random (MCAR)

 $p(R \mid X_{obs}, X_{mis}) = p(R)$

Missingness is independent of all data.

Missing At Random (MAR)

 $p(R \mid X_{obs}, X_{mis}) = p(R \mid X_{obs})$

Missingness depends only on observed data.

Missing Not At Random (MNAR)

 $p(R \mid X_{obs}, X_{mis}) \neq p(R \mid X_{obs})$

Missingness depends (also) on unobserved data.

questionnaire got lost in mail

overweight participants are less likely to report their chocolate consumption (and we know their weight)

overweight participants are less likely to report their weight

MICE Makes Assumptions

(Imputation) methods make certain assumptions, e.g.:

missingness is M(C)AR

- the incomplete variable has a certain conditional distribution (e.g. normal)
- ► all associations are linear
- compatibility and congeniality

In case of MNAR: MICE ➡ bias (Imputation) methods make certain assumptions, e.g.:

▶ missingness is M(C)AR

- the incomplete variable has a certain conditional distribution (e.g. normal)
- ▶ all associations are **linear**
- compatibility and congeniality

$$x_1 \sim x_2 + x_3 + x_4 + \dots$$

$$x_2 \sim x_1 + x_3 + x_4 + \dots$$

$$x_3 \sim x_1 + x_2 + x_4 + \dots$$

$$x_4 \sim x_1 + x_2 + x_3 + \dots$$

:

For example:

- ► linear regression
- Iogistic regression

▶ ...

$$x_1 \sim x_2 + x_3 + x_4 + \dots$$

$$x_2 \sim x_1 + x_3 + x_4 + \dots$$

$$x_3 \sim x_1 + x_2 + x_4 + \dots$$

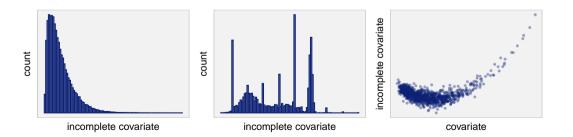
$$x_4 \sim x_1 + x_2 + x_3 + \dots$$

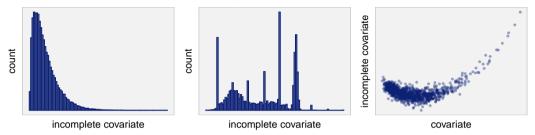
.

For example:

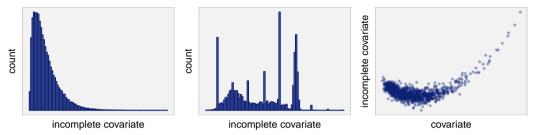
- ► linear regression
- Iogistic regression

▶ ...





- misspecification of the residual distribution
- misspecification of the association structure

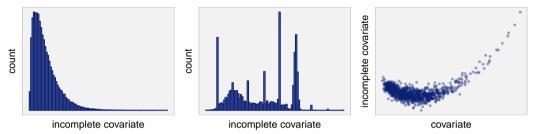


- misspecification of the residual distribution
- misspecification of the association structure

Partial solutions:

- Predictive Mean Matching
- Passive imputation

Imputation Model Misspecification



- misspecification of the residual distribution
- misspecification of the association structure

Partial solutions:

- Predictive Mean Matching
- Passive imputation

But...

- can get tedious
- requires knowledge (about data & methods)
- users often inexperienced and/or lazy

(Imputation) methods make certain assumptions, e.g.:

▶ missingness is M(C)AR

- the incomplete variable has a certain conditional distribution (e.g. normal)
- ► all associations are linear
- compatibility and congeniality

Model misspecification → bias

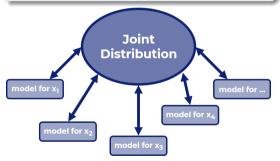
(Imputation) methods make certain assumptions, e.g.:

- missingness is M(C)AR
- the incomplete variable has a certain conditional distribution (e.g. normal)
- ► all associations are linear
- compatibility and congeniality

Compatibility & Congeniality

Compatibility

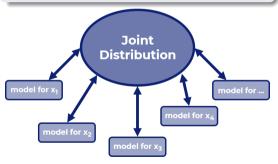
A **joint distribution** exists, that has the full conditionals (imputation models) as its conditional distributions.



Compatibility & Congeniality

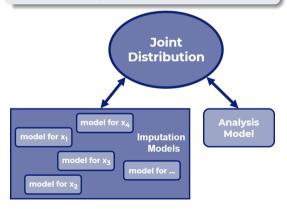
Compatibility

A **joint distribution** exists, that has the full conditionals (imputation models) as its conditional distributions.



Congeniality

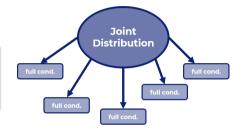
The imputation model is compatible with the **analysis model**.

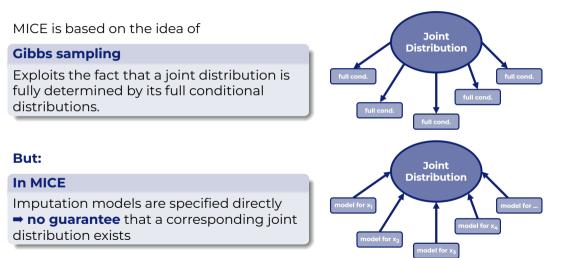


MICE is based on the idea of

Gibbs sampling

Exploits the fact that a joint distribution is fully determined by its full conditional distributions.







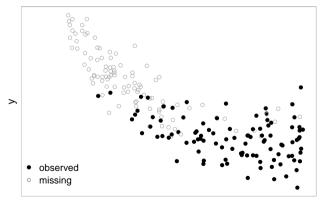
Is this a problem?

- often not
- but it can be when
 - imputation/analysis models contradict each other
 - different assumptions are made during analysis and imputation
 - the outcome cannot easily be included in the imputation models

Example 1: Contradicting Models

Analysis model with a quadratic association:

$$y = \beta_0 + \beta_1 x + \beta_2 \mathbf{x}^2 + \dots$$

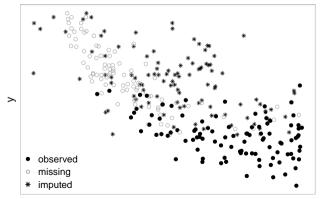


Example 1: Contradicting Models

Imputation model for *x* (when using MICE naively):

 $x = \theta_{10} + \theta_{11}y + \dots,$

i.e., a **linear relation** between x and y is assumed.

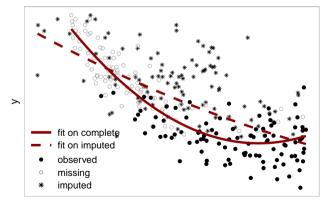


Example 1: Contradicting Models

Imputation model for *x* (when using MICE naively):

 $x = \theta_{10} + \theta_{11}y + \dots,$

i.e., a **linear relation** between x and y is assumed.

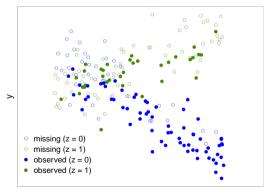


Example 2: Contradicting Models

Analysis model with interaction term:

$$y = \beta_0 + \beta_x x + \beta_z z + \beta_{xz} xz + \dots,$$

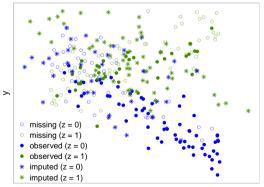
i.e., y again has a **non-linear relationship** with x



Example 2: Contradicting Models

Imputation model for *x* (when using MICE naively):

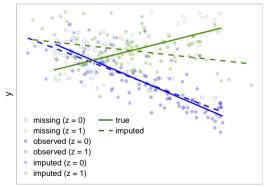
 $x = \theta_{10} + \theta_{11}y + \theta_{12}z + \dots,$



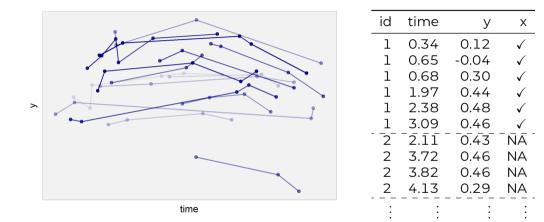
Example 2: Contradicting Models

Imputation model for *x* (when using MICE naively):

 $x = \theta_{10} + \theta_{11}y + \theta_{12}z + \dots,$



Example 3: Longitudinal / Multi-level Data



Example 3: Longitudinal / Multi-level Data

Imputation in **long format**

- rows are treated as independent
- imputations in baseline covariates will vary over time

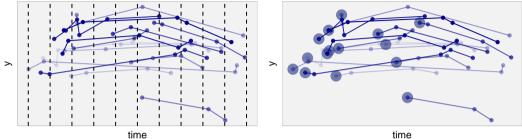
⇒ bias

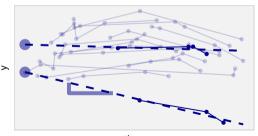
Can we use data in **wide format** (one row per subject)?

- can be very inefficient
- not always possible

id	time	У	х
1	0.34	0.12	\checkmark
1	0.65	-0.04	\checkmark
1	0.68	0.30	\checkmark
1	1.97	0.44	\checkmark
1	2.38	0.48	\checkmark
1	3.09	0.46	\checkmark
2	2.11	0.43	ĪĀ
2	3.72	0.46	NA
2	3.82	0.46	NA
2_	_4.13	0.29	_NA
÷	÷	÷	÷

Example 3: Longitudinal / Multi-level Data



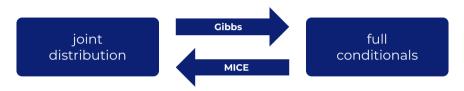


Lack of compatibility / congeniality can become a $\ensuremath{\text{problem for MICE}}$ in settings with

- Non-linear associations
 - non-linear effects
 - interaction terms
 - ▶ ...
- complex outcomes
 - multi-level settings
 - time-to-event outcomes
 - ▶ ...

What can we do in these settings?

Remember, the **problem** is



Remember, the **problem** is

→ Solution: Start with the joint distribution!

Remember, the **problem** is

→ Solution: Start with the joint distribution!

New problem:

What is the multivariate distribution of multiple variables of different types?

Remember, the **problem** is

→ Solution: Start with the joint distribution!

New problem:

What is the multivariate distribution of multiple variables of different types?

🙁 Usually, the joint distribution is not of any known form.

Joint Model Imputation

Multivariate Normal Model

Approximate the joint distribution by a known multivariate (usually normal) distribution

- this is Joint Model Multiple Imputation
- ③ assures compatibility & congeniality

🙁 can't handle non-linear associations

Joint Model Imputation

Multivariate Normal Model

Approximate the joint distribution by a known multivariate (usually normal) distribution

- this is Joint Model Multiple Imputation
- ③ assures compatibility & congeniality
- 🙁 can't handle non-linear associations

Sequential Factorization

Factorize the joint distribution into (a sequence of) conditional distributions.

- ③ assures compatibility & congeniality
- © can handle non-linear associations

A **joint distribution** p(y, x) can be written as the product of conditional distributions:

 $p(y, x) = p(y \mid x) p(x)$

(or alternatively p(y, x) = p(x | y) p(y))

A **joint distribution** p(y, x) can be written as the product of conditional distributions:

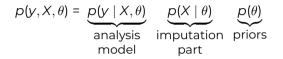
 $p(y, x) = p(y \mid x) p(x)$

(or alternatively p(y, x) = p(x | y) p(y))

This can be extended for more variables:

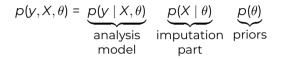
 $p(y, x_1, \dots, x_p) = p(y \mid x_1, \dots, x_p) \ p(x_1 \mid x_2, \dots, x_p) \ p(x_2 \mid x_3, \dots, x_p) \ \dots \ p(x_p)$

Joint Distribution



 θ contains regr. coefficients, variance parameters, ...

Joint Distribution



 θ contains regr. coefficients, variance parameters, ...

Imputation part

$$p(x_1, \dots, x_p, X_{compl.} | \theta) = p(x_1 | X_{compl.}, \theta)$$

$$p(x_2 | X_{compl.}, x_1, \theta)$$

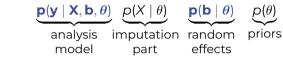
$$p(x_3 | X_{compl.}, x_1, x_2, \theta)$$

. . .

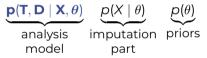
Extension for a Multi-level Setting

 $\mathbf{p}(\mathbf{y} \mid \mathbf{X}, \mathbf{b}, \boldsymbol{\theta})$ $p(X \mid \theta)$ $\mathbf{p}(\mathbf{b} \mid \boldsymbol{\theta})$ $p(\theta)$ analvsis imputation random priors model effects part

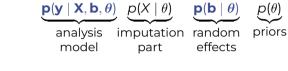
Extension for a Multi-level Setting



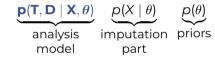
Extension for a Time-to-Event Outcome



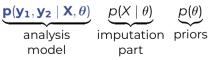
Extension for a Multi-level Setting



Extension for a Time-to-Event Outcome



Extension for a Multivariate Outcome



MICE vs Sequential Factorization

Imputation in MICE

. . .

$$p(x_1 | y, X_{compl.}, x_2, x_3, x_4, \dots, \theta) p(x_2 | y, X_{compl.}, x_1, x_3, x_4, \dots, \theta) p(x_3 | y, X_{compl.}, x_1, x_2, x_4, \dots, \theta)$$

Sequential Factorization

. . .

 $p(y \mid X_{compl.}, x_1, x_2, x_3, \dots, \theta)$ $p(x_1 \mid X_{compl.}, \theta)$ $p(x_2 \mid X_{compl.}, x_1, \theta)$ $p(x_3 \mid X_{compl.}, x_1, x_2, \theta)$

MICE vs Sequential Factorization

Imputation in MICE

. . .

$$p(x_1 | \mathbf{y}, X_{compl.}, x_2, x_3, x_4, \dots, \theta) p(x_2 | \mathbf{y}, X_{compl.}, x_1, x_3, x_4, \dots, \theta) p(x_3 | \mathbf{y}, X_{compl.}, x_1, x_2, x_4, \dots, \theta)$$

Sequential Factorization

 $p(\mathbf{y} \mid \mathbf{X}_{compl.}, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \theta)$ $p(x_1 \mid X_{compl.}, \theta)$ $p(x_2 \mid X_{compl.}, x_1, \theta)$ $p(x_3 \mid X_{compl.}, x_1, x_2, \theta)$...

No issues with

- complex outcomes, e.g.:
 - multi-level
 - survival
- non-linear effects
- congeniality
- compatibility

MICE vs Sequential Factorization

Imputation in MICE

 $p(x_1 | y, X_{compl.}, x_2, x_3, x_4, \dots, \theta)$ $p(x_2 | y, X_{compl.}, x_1, x_3, x_4, \dots, \theta)$ $p(x_3 | y, X_{compl.}, x_1, x_2, x_4, \dots, \theta)$

. . .

Sequential Factorization

 $p(y \mid X_{compl.}, x_1, x_2, x_3, \dots, \theta)$ $p(x_1 \mid X_{compl.}, \theta)$ $p(x_2 \mid X_{compl.}, x_1, \theta)$ $p(x_3 \mid X_{compl.}, x_1, x_2, \theta)$ \dots

Analysis model part of specification

- parameters of interest directly available
- no need for pooling
- simultaneous analysis and imputation

Joint Analysis and Imputation in 🗬

Sequential Factorization is implemented in the **Q** package **JointAI**

Joint Analysis and Imputation in 🗬

Sequential Factorization is implemented in the **Q** package **JointAI**

Bayesian analysis of incomplete data using

- (generalized) linear regression
- (generalized) linear mixed models
- ordinal (mixed) models

- parametric (Weibull) time-to-event models
- Cox proportional hazards models

Joint Analysis and Imputation in 🗬

Sequential Factorization is implemented in the **Q** package **JointAI**

Bayesian analysis of incomplete data using

- (generalized) linear regression
- (generalized) linear mixed models
- ordinal (mixed) models

- parametric (Weibull) time-to-event models
- Cox proportional hazards models

- GitHub: https://github.com/NErler/JointAl
- website: https://nerler.github.io/JointAl/

Joint Analysis and Imputation in 🗬

	standard regression		mixed model	
type	outcome	covariate	outcome	covariate
normal	\checkmark	\checkmark	\checkmark	\checkmark
lognormal	(soon)	\checkmark	(soon)	\checkmark
Gamma	\checkmark	\checkmark	\checkmark	\checkmark
beta	(soon)	\checkmark	(soon)	(soon)
binomial	\checkmark	\checkmark	\checkmark	\checkmark
poisson	\checkmark	(soon)	\checkmark	\checkmark
ordinal	\checkmark	\checkmark	\checkmark	\checkmark
multinomial	(soon)	\checkmark	(soon)	(soon)

Available soon:

- Joint models (of longitudinal & time-to-event data)
- Multivariate models

Requirements:

- (https://cran.r-project.org/)
- JAGS (Just Another Gibbs Sampler; https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/)

Requirements:

- (https://cran.r-project.org/)
- JAGS (Just Another Gibbs Sampler; https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/)

Installation:

install.packages("JointAI")

Requirements:

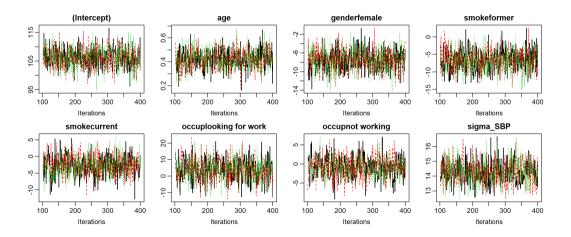
- (https://cran.r-project.org/)
- JAGS (Just Another Gibbs Sampler; https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/)

Installation:

```
install.packages("JointAI")
```

Usage:

traceplot(res)



summary(res)

```
##
   Linear model fitted with JointAI
##
##
## Call:
## lm imp(formula = SBP ~ age + gender + smoke + occup, data = NHANES,
##
      n.iter = 300)
##
## Posterior summary:
##
                         Mean
                                 SD 2.5% 97.5% tail-prob. GR-crit
                      106.222 3.3979
                                     99.461 112.961
                                                      0.0000
## (Intercept)
                                                                1.00
## age
                       0.427 0.0798
                                      0.278 0.583 0.0000 1.00
## genderfemale
                       -7.450 2.2718 -11.755 -3.072 0.0000 1.00
## smokeformer
                      -6.692 3.0297 -12.342 -0.885 0.0267 1.03
## smokecurrent
                      -2.658 3.0229 -8.450 3.313 0.3711 1.01
                                     -9.487 16.087 0.5044 1.01
## occuplooking for work 3.817 6.4037
## occupnot working
                       -0.8692.6858 -6.1104.256
                                                    0.7511 1.02
##
## Posterior summary of residual std. deviation:
##
            Mean
                   SD 2.5% 97.5% GR-crit
## sigma_SBP 14.3 0.753 12.8 15.8 0.999
##
##
## MCMC settings
## [...]
```

- ⑦ missingness is M(C)AR
- Ithe incomplete variable has a certain conditional distribution
- ⑦ all associations are linear
- ☑ compatibility and congeniality

- ⑦ missingness is M(C)AR
- The incomplete variable has a certain conditional distribution
- Ill associations are linear
- ☑ compatibility and congeniality

 extension to MNAR using pattern mixture model

- ⑦ missingness is M(C)AR
- Ithe incomplete variable has a certain conditional distribution
- Ill associations are linear
- ☑ compatibility and congeniality

- extension to MNAR using pattern mixture model
- non-parametric Bayesian methods

- ⑦ missingness is M(C)AR
- The incomplete variable has a certain conditional distribution
- Ill associations are linear
- ☑ compatibility and congeniality

- extension to MNAR using pattern mixture model
- non-parametric Bayesian methods
- semi-parametric methods

- handling missing values correctly: not that easy
- ► all methods have assumptions violation → bias

- handling missing values correctly: not that easy
- ► all methods have assumptions violation ⇒ bias
- good use of (imputation) methods requires
 - knowledge of the data
 - knowledge of the methods
 - knowledge of the software
 - time & patience!

- handling missing values correctly: not that easy
- ► all methods have assumptions violation ⇒ bias
- good use of (imputation) methods requires
 - knowledge of the data
 - knowledge of the methods
 - knowledge of the software
 - time & patience!

JointAl aims to facilitate correct handling of missing values by

- assuring compatibility & congeniality
- simultaneous analysis & imputation
- especially for complex settings

- handling missing values correctly: not that easy
- ► all methods have assumptions violation ⇒ bias
- good use of (imputation) methods requires
 - knowledge of the data
 - knowledge of the methods
 - knowledge of the software
 - time & patience!

JointAl aims to facilitate correct handling of missing values by

- assuring compatibility & congeniality
- simultaneous analysis & imputation
- especially for complex settings

• There is no magical solution that will always work in all settings.

Thank you for your attention.

- n.erler@erasmusmc.nl
- M_Erler
- O NErler
- www.nerler.com

