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Introduction

Nowadays: Availability of imputation methods in standard software facilitates automated imputation
of incomplete data. For example in R:

mice

Multiple Imputation (MI)
using chained equations

jomo

Joint Model MI using a multi-
variate normal model (MVN)

JointAI

Bayesian joint model sequen-
tial factorization imputation︸ ︷︷ ︸

Impute missing values by draws from the (posterior) predictive distribution of an incomplete
variable, conditional on (all) other variables.

á The predictive distributions need to fit the data well!

However:
. imputation models are specified automatically by the software
. in practice often no effort is made to check the validity of the postulated models

Robustness of MI - Some Findings from Literature

Normal imputation model for non-normal data

I MICE & MVN robust for inference about the mean
I more flexible distributions necessary when

interest is in quantiles
I MICE: non-/semi-parametric methods often better

Comparison between approaches

I MVN & MICE similarly robust
I misspecified MICE better than compl. case analysis
I doubly robust IPW may be even better than MICE

Bounded variables

I imputation outside range acceptable
for inference on mean

I problematic for variance, quantiles,
shape, . . .

Structure of the linear predictor

I flexible models can outperform normal
imputation & pred. mean matching

I e.g.: GAMLSS, penalized regression

Sequential Factorization Imputation

Fully Bayesian approach allowing simultaneous analysis and imputation:
I factorize joint distribution as sequence of conditional distributions,
I one of which one is the analysis model of interest:

p(y ,X ,θ) ∝ p(y | X c, x1, . . . , xp,θy)︸ ︷︷ ︸
analysis model

p(x1 | X c,θx1) . . . p(xp | X c, x1, . . . , xp−1,θxp)︸ ︷︷ ︸
conditional distributions

π(θy)π(θx1) . . . π(θxp)︸ ︷︷ ︸
priors

,
Notation:

X = (X c,Xmis) design matrix of completely observed
and incomplete covariates

Xmis = (x1, . . . , xp), θ = (θT
y ,θ

T
x1, . . . ,θ

T
xp)

T ,

X<` = (x1, . . . , x `−1)T

I Draw imputations from the Posterior Predictive Distribution (PPD) (e.g., for a covariate x`):

p(x ` | y ,X c,X−`,θ) ∝ p (y | X c,Xmis,θy) p(x ` | X c,X<`,θx`)︸ ︷︷ ︸
cond. distr. of x `

p∏
k=`+1

p(xk | X c,X<k,θxk)

︸ ︷︷ ︸
cond. distr. of x `+1, . . . , xp

π(θy)π(θx`)

p∏
k=`+1

π(θxk),

I PPD specified indirectly á direct evaluation of its fit not possible

Our Research Question:

How robust is sequential factorization imputation to misspecification of conditional distributions?

Investigating Robustness by Simulation

I Analysis model: linear regression with 4 covariates

y ∼N(β0 + β1x1 + β2x2 + β3x3 + β4x4, σ
2
y) standardized β = 0.1, 0.5 or 1

x1 ∼N(0, 1) or x1 ∼ Gamma(5, 10) (complete)

x2 ∼Bin(0.5) (complete)

x3 ∼Bin (expit{α10 + α11x1 + α12x2})
x4|x1, x2, x3, α2· depending on scenario }(10%, 30% or 50% MAR)

I Misspecification of the conditional distribution of x4:
. wrongly assuming linear association with other covariates,
. omission of an important interaction effect,
. disregard skewness or multimodality by mis-specification of the residual distribution or

sequence of cond. distributions
I Imputation under a naive model assuming normality & lin. associations, using
. sequential factorization imputation (R package JointAI)
. as comparison: MICE (R package mice, with pred. mean matching)

I Performance evaluation:
. relative bias (β̂imp/β̂complete)
. coverage of true parameter by the 95% confidence/credible intervals (CI)

How Robust is Sequential Factorization Imputation?
I Overall: methods performed worse with more missing values and larger β.
I Missingness proportion had stronger impact on performance than size of β.
I Settings with small standardized β = 0.1 had negligible bias for most scenarios.

Non-linear association between x4 and x1:

quadratic

x4 ~ N(α21 x1 + α22 x1
2 + …, σx

2)
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logarithmic

x4 ~ N(… + α21 log(x1) + …, σx
2)
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quadratic: coverage in JointAI ≥ 0.4, MICE ≥ 0.6; bias in β̂4: for MICE larger than for JointAI
logarithmic: coverage in MICE ≥ 0.6 (JointAI ≥ 0.9); MICE also biased in all other β̂

Non-normal conditional distribution of x4:

Beta

x4 ~ Beta.(…, …)
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x4 ~ Gamma.(…, …)
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Beta: MICE also biased for β̂4 (JointAI not), coverage for both ≈ 0.95
Gamma: bias in all β̂, worse for MICE; coverage JointAI ≥ 0.7, MICE ≥ 0.25

Incorrect sequence or omitted interaction:

sequence

x4 ~ N(… + α23 x3 + …, σx
2)

−5 0 5
x4

p(
x 4

|x
3)

interaction

x4 ~ N(… + α24 x1 x3, σx
2)

−2 −1 0 1 2

x1 ~ N(0, 1)
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x 4
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sequence: bias in all β̂, but worse for MICE; coverage MICE ≥ 0.65, JointAI ≥ 0.85
interaction: MICE more severely biased in all β̂, coverage MICE ≥ 0.5, JointAI ≥ 0.75

Conclusions

I Misspecification of the cond. distributions translates to misspecified imputation models.
I In most of our scenarios: JointAI performed (slightly) better than MICE.
I Fit of the cond. distributions needs to be validated to obtain unbiased results.
I More flexible models are needed to assure appropriate performance in practice, where

imputation is often used in a “black-box” manner.
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