Imputation model misspecification: How robust are Bayesian methods?

Nicole S. Erler¹, Dimitris Rizopoulos¹, Emmanuel M.E.H. Lesaffre^{1,2}

¹Department of Biostatistics, Erasmus MC, Rotterdam, the Netherlands, ²K.U.Leuven, L-Biostat, Leuven, Belgium

Introduction

Nowadays: Availability of imputation methods in standard software facilitates automated imputation of incomplete data. For example in R:

mice	jomo	JointAl
Multiple Imputation (MI)	Joint Model MI using a multi-	Bayesian joint model sequer
using chained equations	variate normal model (MVN)	tial factorization imputation

Impute missing values by draws from the (posterior) predictive distribution of an incomplete variable, conditional on (all) other variables.

→ The predictive distributions need to fit the data well!

However:

- ▷ imputation models are specified automatically by the software

How Robust is Sequential Factorization Imputation?

- \blacktriangleright Overall: methods performed worse with more missing values and larger β .
- \blacktriangleright Missingness proportion had stronger impact on performance than size of β .
- \blacktriangleright Settings with small standardized $\beta = 0.1$ had negligible bias for most scenarios.

Non-linear association between x_4 and x_1 :

▷ in practice often no effort is made to check the validity of the postulated models

Robustness of MI - Some Findings from Literature

Normal imputation model for non-normal data

- ► MICE & MVN robust for inference about the mean
- more flexible distributions necessary when interest is **in quantiles**
- MICE: non-/semi-parametric methods often better

Comparison between approaches

- ► MVN & MICE similarly robust
- misspecified MICE better than compl. case analysis
- doubly robust IPW may be even better than MICE

Bounded variables

- imputation outside range acceptable for inference on mean
- problematic for variance, quantiles, shape, ...

Structure of the linear predictor

- flexible models can outperform normal imputation & pred. mean matching
- e.g.: GAMLSS, penalized regression

Sequential Factorization Imputation

- Fully Bayesian approach allowing simultaneous analysis and imputation:
- factorize joint distribution as sequence of conditional distributions,
- one of which one is the analysis model of interest:

 $p(\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}) \propto p(\mathbf{y} \mid \mathbf{X}_c, \mathbf{x}_1, \dots, \mathbf{x}_p, \boldsymbol{\theta}_y) p(\mathbf{x}_1 \mid \mathbf{X}_c, \boldsymbol{\theta}_{x_1}) \dots p(\mathbf{x}_p \mid \mathbf{X}_c, \mathbf{x}_1, \dots, \mathbf{x}_{p-1}, \boldsymbol{\theta}_{x_p})$ analysis model conditional distributions

quadratic: coverage in JointAl \geq 0.4, MICE \geq 0.6; bias in $\hat{\beta}_4$: for MICE larger than for JointAl **logarithmic:** coverage in MICE ≥ 0.6 (JointAl ≥ 0.9); MICE also biased in all other $\hat{\beta}$

Non-normal conditional distribution of x_4 :

$$\underbrace{\pi(\boldsymbol{\theta}_y)\pi(\boldsymbol{\theta}_{x_1})\ldots\pi(\boldsymbol{\theta}_{x_p})}_{\text{priors}},$$

Notation:

$$X = (X_c, X_{mis})$$
 design matrix of completely observed
and incomplete covariates
 $X_{mis} = (x_1, \dots, x_p), \quad \theta = (\theta_y^T, \theta_{x_1}^T, \dots, \theta_{x_p}^T)^T,$
 $X_{<\ell} = (x_1, \dots, x_{\ell-1})^T$

 \blacktriangleright Draw imputations from the **Posterior Predictive Distribution** (PPD) (e.g., for a covariate x_{ℓ}):

$$p(\boldsymbol{x}_{\ell} \mid \boldsymbol{y}, \boldsymbol{X}_{c}, \boldsymbol{X}_{-\ell}, \boldsymbol{\theta}) \propto p(\boldsymbol{y} \mid \boldsymbol{X}_{c}, \boldsymbol{X}_{\textit{mis}}, \boldsymbol{\theta}_{y}) \underbrace{p(\boldsymbol{x}_{\ell} \mid \boldsymbol{X}_{c}, \boldsymbol{X}_{<\ell}, \boldsymbol{\theta}_{x_{\ell}})}_{\text{cond. distr. of } \boldsymbol{x}_{\ell}} \left\{ \prod_{k=\ell+1}^{p} p(\boldsymbol{x}_{k} \mid \boldsymbol{X}_{c}, \boldsymbol{X}_{$$

► PPD specified indirectly → direct evaluation of its fit not possible

Our Research Question:

How robust is sequential factorization imputation to misspecification of conditional distributions?

Investigating Robustness by Simulation

- ► Analysis model: linear regression with 4 covariates

standardized $\beta = 0.1$, 0.5 or 1 (complete) (complete) 10%, 30% or 50% MAR) **Beta:** MICE also biased for $\hat{\beta}_4$ (JointAl not), coverage for both ≈ 0.95 **Gamma:** bias in all $\hat{\beta}$, worse for MICE; coverage JointAl ≥ 0.7 , MICE ≥ 0.25

Incorrect sequence or omitted interaction:

 $y \sim \mathcal{N}(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4, \sigma_v^2)$ $x_1 \sim N(0,1)$ or $x_1 \sim Gamma(5,10)$ $x_2 \sim Bin(0.5)$ $x_3 \sim Bin(expit\{\alpha_{10} + \alpha_{11}x_1 + \alpha_{12}x_2\})$ $x_4 | x_1, x_2, x_3, \alpha_2$. depending on scenario

- **Misspecification** of the conditional distribution of x_4 :
 - ▷ wrongly assuming **linear association** with other covariates,
 - ▷ omission of an important **interaction effect**,
 - b disregard skewness or multimodality by mis-specification of the residual distribution or sequence of cond. distributions
- Imputation under a naive model assuming normality & lin. associations, using
 - sequential factorization imputation (R package JointAI)
 - ▷ as comparison: **MICE** (R package **mice**, with pred. mean matching)
- ► Performance evaluation:
 - \triangleright relative bias $(\hat{\beta}_{imp}/\hat{\beta}_{complete})$
 - coverage of true parameter by the 95% confidence/credible intervals (CI)

interaction: MICE more severely biased in all $\hat{\beta}$, coverage MICE ≥ 0.5 , JointAI ≥ 0.75

Conclusions

- ► Misspecification of the cond. distributions translates to misspecified imputation models.
- In most of our scenarios: JointAl performed (slightly) better than MICE.
- **Fit of the cond. distributions needs to be validated** to obtain unbiased results.
- ► More flexible models are needed to assure appropriate performance in practice, where imputation is often used in a "black-box" manner.

n.erler@erasmusmc.nl

\mathbf{Y} N_Erler

