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Outline

Part I: Multiple Imputation

How does multiple imputation work?

The ideas behind MI

Understanding sources of uncertainty

Implementation of MI and MICE

Part II: Multiple Imputation Workflow

How to perform MI with the mice package in R, from getting to know
the data to the final results.

Practicals: imputation with mice & checking imputed data
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Outline (cont.)

Part III: When MICE might fail

Introduction to

settings where standard use of mice is problematic

alternative imputation approaches

alternative R packages

Practicals: Imputation with non-linear functional forms & multi-level out-
comes

Part IV: Multiple Imputation Strategies

Some tips & tricks
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Part I

Multiple Imputation

3 / 161



1. What is Multiple Imputation?
1.1. History & Ideas

Developed by Donald B. Rubin in the 1970s

to handle missing values in public use databases
(e.g., census data provided by the government),

motivated by the increase in missing values, and

increased availability of computers.

Goal: data should be usable by [10]

a large number of analysts, who commonly have to rely on

standard software that can only handle complete data, and usually

are not experts in handling incomplete data.
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1. What is Multiple Imputation?
1.1. History & Ideas

Rubin’s thoughts: [11]

One imputed value can not be
correct in general.
á We need to represent missing
values by a number of imputations.

á

To find sensible values to fill
in, we need some kind of
model.

á

Missing data has a distribution. á
This distribution depends on
assumptions that have been
made about the model.á

What we want is the
‘predictive distribution’ of the missing values given the observed values.
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1. What is Multiple Imputation?
1.1. History & Ideas

How to obtain that predictive distribution?

Idea: assume nonrespondents are just like respondents

fit a model to the observed data

obtain for each “nonrespondent” the conditional distribution of the missing
data (given the observed data) as if he/she was a respondent

How to represent the multiple imputed values?

for each set of imputed values, create a dataset
(those datasets agree in the observed values but imputed values differ)

analyse each dataset

combine results from all analyses

á We can describe

the overall results

how (much) the results vary between the imputed datasets
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1. What is Multiple Imputation?
1.2. Notation

X : n × p data matrix with n rows and p variables x1, . . . , xp

Xobs : observed data, Xmis : missing data

R: n × p missing indicator matrix containing 0 (missing) or 1 (observed)

X =

X−2 X2 X−2

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p

R =

R1,1 R1,2 . . . R1,p

R2,1 R2,2 . . . R2,p
...

...
. . .

...
Rn,1 Rn,2 . . . Rn,p

For example:

X =

X1 X2 X3 X4

X NA X X
X X NA NA
X NA X NA

á R =
1 0 1 1
1 1 0 0
1 0 1 0
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1. What is Multiple Imputation?
1.3. Missing data mechanisms

Missing Completely At Random (MCAR)

p(R | Xobs ,Xmis) = P(R)

Missingness is independent of all data

Missing At Random (MAR)

p(R | Xobs ,Xmis) = P(R | Xobs)

Missingness depends only on observed data

Missing Not At Random (MNAR)

p(R | Xobs ,Xmis) 6= P(R | Xobs)

Missingness depends (also) on unobserved data

questionnaire got lost in mail

overweight participants are less
likely to report their chocolate
consumption (and we know
their weight)

overweight participants are less
likely to report their weight
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1. What is Multiple Imputation?
1.3. Missing data mechanisms

MCAR is a special case of MAR

not possible to distinguish MNAR from MAR with just the observed data

Ignorability:
If M(C)AR and parameters in p(R | X , ψ) are (a priori) independent of
parameters in p(X | θ) á missingness process does not need to be modelled

Complete case analysis (mostly) only unbiased in MCAR

Here:

we assume MAR,

focus on missing values in covariates, and

cross-sectional data (for now)

9 / 161



1. What is Multiple Imputation?
1.3. Missing data mechanisms

MCAR is a special case of MAR

not possible to distinguish MNAR from MAR with just the observed data

Ignorability:
If M(C)AR and parameters in p(R | X , ψ) are (a priori) independent of
parameters in p(X | θ) á missingness process does not need to be modelled

Complete case analysis (mostly) only unbiased in MCAR

Here:

we assume MAR,

focus on missing values in covariates, and

cross-sectional data (for now)

9 / 161



1. What is Multiple Imputation?
1.4. Three steps

 

incomplete 

data 

multiple 
imputed 
datasets 

pooled 

results 

analysis 

results 

In summary:

1. Imputation: impute multiple times á multiple completed datasets

2. Analysis: analyse each of the datasets

3. Pooling: combine results, taking into account additional uncertainty
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2. Imputation step
2.1. Univariate missing data

How can we actually get imputed values?

For now: assume only one continuous variable has
missing values (univariate missing data).

X1 X2 X3 X4

X NA X X
X X X X
X NA X X
...

...
...

...

Idea: Predict values

Model:
xi2 = β0 + β1xi1 + β2xi3 + β3xi4 + εi

Imputed/predicted value:
x̂i2 = β̂0 + β̂1xi1 + β̂2xi3 + β̂3xi4
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2. Imputation step
2.1. Univariate missing data

Problem:

We can obtain only one imputed value per missing value, but we wanted
a whole distribution.

The predicted values do not take into account the added uncertainty due
to the missing values.

á We need to take into account two sources of uncertainty:

The parameters are estimated with uncertainty
(represented by the std. error).

There is random variation / prediction error
(variation of the residuals).
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2. Imputation step
2.1. Univariate missing data

Taking into account uncertainty about the parameters β:
We assume that β has a distribution, and we can sample realizations of β
from that distribution.

When plugging the different realizations
of β into the predictive model, we
obtain slightly different regression
lines.

With each set of coefficients, we also
get slightly different predicted values.
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2. Imputation step
2.1. Univariate missing data

Taking into account the prediction error:
The model does not fit the data perfectly: observations are scattered around
the regression lines.

We assume that the data have a
distribution, where

the mean for each value is given
by the predictive model, and

the variance is determined by the
variance of the residuals ε.

In the end, we obtain one imputed dataset for each color.
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2. Imputation step
2.2. Semi-parametric imputation

Assumption of distributions for parameters and missing values:

Bayesian

Alternative to take into account uncertainty in parameters:

Bootstrap

Both require the assumption of a distribution for the missing values.

What if none of the standard distribution fits?
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2. Imputation step
2.2. Semi-parametric imputation

Predictive Mean Matching (PMM)

semi-parametric approach to imputation

developed for settings where the normal distribution is not a good choice
for the predictive distribution [7, 8]

Idea:

find cases in the observed data that are similar to the cases with missing
values

fill in the missing value with the observed value from one of those cases

To find similar cases, the predicted values of complete and incomplete cases
are compared.
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2. Imputation step
2.2. Semi-parametric imputation

The steps in PMM:

1. Obtain parameter estimates for β̂ and σ̂.

2. Calculate the predicted values for the observed cases

ŷobs = Xobs β̂.

3. Calculate the predicted value for the missing cases

ŷmis = Xmis β̂.

4. For each missing value, find d donor candidates that fulfill a given
criterium.

5. Randomly select one of the donors.

17 / 161



2. Imputation step
2.2. Semi-parametric imputation

Several criteria to select donors have been proposed:

1. The donor is the (one) case with the smallest absolute difference

2. Donor candidates are the d cases with the smallest absolute
difference. The donor is selected randomly from the candidates.

3. Donor candidates are those cases for which the absolute difference is
smaller than some limit η. The donor is selected randomly from the
candidates.

4. Select candidates like in 2. or 3., but select the donor from the candidates
with probability that depends on the absolute difference.[14]

18 / 161
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2. Imputation step
2.2. Semi-parametric imputation

Potential issues with donor selection

If the same donor is chosen in many/all imputations (e.g., because only a
few similar observed cases are available), the uncertainty about the
missing values will be underestimated.

Therefore, using one donor is not a good idea. On the other hand, using
too many candidates can lead to bad matches.

á PMM may be problematic when

the dataset is very small,

the proportion of missing values is large, or

one/some predictor variable(s) are strongly related to the
missingness.

19 / 161
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2. Imputation step
2.2. Semi-parametric imputation

For the sampling of the parameters (step 1 on slide 17), different approaches
have been introduced in the literature:

Type-0 β̂LS/ML (least squares or maximum likelihood) are used in both pre-
diction models

Type-I β̂LS/ML to predict ŷobs ; β̃B/BS (Bayesian or bootstrap) to predict ŷmis

Type-II β̃B/BS to predict ŷobs as well as ŷmis

Type-III different draws β̃
(1)
B/BS and β̃

(2)
B/BS to predict ŷobs and ŷmis , respectively

The use of Type-0 and Type-I matching underestimates the uncertainty
about the regression parameters.

20 / 161



2. Imputation step
2.2. Semi-parametric imputation

Another point to consider:
the choice of the set of data used to train the prediction models.

In the version presented on slide 17, the same set of data (all cases with
observed y) is used to train the model and to produce predicted values of yobs .

The predictive model will likely fit the observed cases better than the missing
cases, and, hence, variation will be underestimated.

Alternatives:

the model could be trained on the whole data (using previously
imputed values)

use a leave-one-out approach on the observed data

21 / 161



2. Imputation step
2.3. What is implemented in software?

mice (in R):

PMM via mice.impute.pmm()

specification of number of donors d (same for all variables)
Type-0, Type-I, Type-II matching

PMM via mice.impute.midastouch()

allows leave-one-out estimation of the parameters
distance based donor selection
Type-0, Type-I, Type-II matching

bootstrap linear regression via mice.impute.norm.boot()

bootstrap logistic regression via mice.impute.logreg.boot()

Bayesian linear regression via mice.impute.norm()

. . .

22 / 161



2. Imputation step
2.4. Multivariate missing data

Multivariate missing data:
What if we have missing values in more than one variable?

In case of monotone missing values we can use
the technique for univariate missing data in a chain:
impute x4 given x1

impute x3 given x1 and x4

impute x2 given x1, x4 and x3

X1 X4 X3 X2

X X X NA
X X NA NA
X NA NA NA
...

...
...

...

When we have non-monotone missing data there
is no sequence without conditioning on unobserved
values.

X1 X2 X3 X4

X NA X X
NA X NA NA
X NA X NA
...

...
...

...
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2. Imputation step
2.4. Multivariate missing data

There are two popular approaches for the imputation step in multivariate
non-monotone missing data:

Fully Conditional Specification

Multiple Imputation using Chained Equations (MICE)

sometimes also: sequential regression

implemented in SPSS, R, Stata, SAS, . . .

our focus here

Joint Model Imputation

(see for example Carpenter & Kenward [2])
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2. Imputation step
2.5. FCS/MICE

Algorithm 1 MICE algorithm [15] for one imputed dataset

1: for j in 1, . . . , p: . Setup
2: Specify imputation model for variable Xj

p(Xmis
j | X obs

j ,X−j ,R)

3: Fill in starting imputations Ẋ 0
j by random draws from X obs

j .
4: end for

5: for t in 1, . . . ,T : . loop through iterations
6: for j in 1, . . . , p: . loop through variables

7: Define currently complete data except Xj

Ẋ t
−j =

(
Ẋ t

1 , . . . , Ẋ
t
j−1, Ẋ

t−1
j+1 , . . . , Ẋ

t−1
p

)
.

8: Draw parameters θ̇tj ∼ p(θtj | X obs
j , Ẋ t

−j ,R).

9: Draw imputations Ẋ t
j ∼ p(Xmis

j | Ẋ t
−j ,R, θ̇

t
j ).

10: end for
11: end for
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2. Imputation step
2.5. FCS/MICE

The imputed values from the last iteration,(
ẊT

1 , . . . , Ẋ
T
p

)
,

are then used to replace the missing values in the original data.

One run through the algorithm á one imputed dataset.

á To obtain m imputed datasets: repeat m times

The sequence of imputations for one missing value (from starting value
to final iteration) is called a chain.

Each run through the MICE algorithm produces one chain per missing
value.
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2. Imputation step
2.5. FCS/MICE

Why iterations?

Imputed values in one variable depend on the imputed values of the other
variables (Gibbs sampling).

If the starting values (random draws) are far from the actual distribution,
imputed values from the first few iterations are not draws from the
distribution of interest.

How many iterations?
Until convergence
= when the sampling distribution does not change any more
(Note: the imputed value will still vary between iterations.)

How to evaluate convergence?
The traceplot (x-axis: iteration number, y-axis: imputed value) should show a
horizontal band.
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2. Imputation step
2.6. Checking convergence

iteration

va
lu

e

chain 1

chain 2

chain 3

Each chain is the sequence of imputed values (from starting value to final
imputed value) for the same missing value.
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3. Analysis step

Multiple imputed datasets:
X1 X2 X3 X4

1.4 9.2 1.8 2.0
0.5 12.4 2.3 0.1
-0.5 10.7 2.6 -1.6

...
...

...
...

X1 X2 X3 X4

1.4 13.3 1.8 2.0
0.5 12.4 2.1 0.6
-0.5 10.2 2.6 -1.7

...
...

...
...

X1 X2 X3 X4

1.4 10.0 1.8 2.0
0.5 12.4 2.2 -1.4
-0.5 8.6 2.6 -1.0

...
...

...
...

Analysis model of interest, e.g.,

x1 = β0 + β1x2 + β2x3 + β3x4

Multiple sets of results:
est. se

β0 -0.15 0.22
β1 0.16 0.02
β2 -0.59 0.03
β3 0.28 0.03

est. se

β0 0.19 0.16
β1 0.14 0.01
β2 -0.59 0.03
β3 0.2 0.03

est. se

β0 0.04 0.22
β1 0.14 0.01
β2 -0.58 0.03
β3 0.28 0.03
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4. Pooling

In the results from multiply imputed data there are two types of
variation/uncertainty:

within imputation (represented by the confidence intervals)

between imputation (horizontal shift between imputations)

●

●

●

●

●

●

●

●

●

●

●

●

(Intercept) x2 x3 x4

imp 1

imp 2

imp 3

parameter estimate & 95% confidence interval
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4. Pooling

To summarize the results, we can take the mean of the results from the
separate analyses. This is the pooled point estimate.
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●

●

●

●

●

●

●

●

●

●

●

(Intercept) x2 x3 x4

imp 1

imp 2

imp 3

parameter estimate & 95% confidence interval

But does the same work for the standard error (or bounds of the CIs)?

The averaged CI’s (marked in red) underestimate the total variation (within +
between).
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4. Pooling

The most commonly used method to pool results from analyses of multiply
imputed data was introduced by Rubin [9], hence Rubin’s Rules.

Notation:
m: number of imputed datasets
Q`: quantity of interest (e.g., regr. parameter β) from `-th imputation
U`: variance of Q` (e.g., var(β) = se(β)2)

Pooled parameter estimate:

Q̄ =
1

m

m∑
`=1

Q̂`
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4. Pooling

The variance of the pooled parameter estimate is calculated from the within
and between imputation variance.

Average within imputation variance:

Ū =
1

m

m∑
`=1

Û`

Between imputation variance:

B =
1

m − 1

m∑
`=1

(
Q̂` − Q̄

)T (
Q̂` − Q̄

)

Total variance:
T = Ū + B + B/m
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4. Pooling

The (1− α) 100% confidence interval is then

Q̄ ± tν(α/2)
√
T ,

where tν is the α/2 quantile of the t distribution with ν = (m − 1)
(
1 + r−1

m

)2

degrees of freedom 1, where rm = (B+B/m)

Ū
is the relative increase in variance

that is due to the missing values.

●

●

●

●

●

●

●

●

●

●

●

●

(Intercept) x2 x3 x4

imp 1

imp 2

imp 3

parameter estimate & 95% confidence interval

1Barnard et al. [1] proposed an improvement to calculate the degrees of freedom. This
improved version is implemented in the mice package.
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Part II

Multiple Imputation Workflow
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5. Know your data
5.1. Missing data patterns

To demonstrate the work flow when performing multiple imputation with the
mice package, we use data from the National Health and Nutrition
Examination Survey (NHANES).

There are several packages in R that provide functions to visualize incomplete
data.

Examples are:
naniar, VIM, visdat, mice, JointAI, Amelia, . . .
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5. Know your data
5.2. Data distributions

JointAI::plot_all(NHANES, nclass = 30)
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5. Know your data
5.2. Data distributions

mdp <- mice::md.pattern(NHANES, plot = FALSE)

head(mdp[, -c(6:14)]) # omit some columns to fit it on the slide

## age gender race DM educ HDL hypchol creat albu uricacid bili alc HyperMed

## 568 1 1 1 1 1 1 1 1 1 1 1 1 1 0

## 1040 1 1 1 1 1 1 1 1 1 1 1 1 0 1

## 141 1 1 1 1 1 1 1 1 1 1 1 0 1 1

## 300 1 1 1 1 1 1 1 1 1 1 1 0 0 2

## 2 1 1 1 1 1 1 1 1 1 1 0 1 0 2

## 1 1 1 1 1 1 1 1 1 1 1 0 0 0 3

tail(mdp[, -c(6:14)])

## age gender race DM educ HDL hypchol creat albu uricacid bili alc HyperMed

## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2

## 1 1 1 1 1 1 0 0 0 0 0 0 0 0 10

## 1 1 1 1 1 1 1 1 1 1 1 1 1 0 4

## 1 1 1 1 1 0 0 0 0 0 0 0 1 0 12

## 0 0 0 0 1 175 175 184 184 185 188 627 1606 4010
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5. Know your data
5.2. Data distributions

JointAI::md_pattern(NHANES)
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5. Know your data
5.2. Data distributions

VIM::aggr(NHANES, prop = TRUE, numbers = FALSE)
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5. Know your data
5.2. Data distributions

naniar::vis_miss(NHANES)
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5. Know your data
5.2. Data distributions

naniar::gg_miss_upset(NHANES[, 1:10], nsets = 10)
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5. Know your data
5.2. Data distributions

We are also interested in the number and proportion of (in)complete cases ...

cbind(

"#" = table(ifelse(complete.cases(NHANES), 'incompl.', 'complete')),

"%" = round(100 * table(complete.cases(NHANES))/nrow(NHANES), 2)

)

## # %

## complete 1915 77.12

## incompl. 568 22.88
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5. Know your data
5.2. Data distributions

... and the proportion of missing values per variable:

cbind("# NA" = sort(colSums(is.na(NHANES))),

"% NA" = round(sort(colMeans(is.na(NHANES))) * 100, 2))

# see also: naniar::miss_var_summary()

## # NA % NA

## age 0 0.00

## gender 0 0.00

## race 0 0.00

## DM 0 0.00

## educ 1 0.04

## smoke 4 0.16

## occup 35 1.41

## wgt 40 1.61

## hgt 45 1.81

## BMI 73 2.94

## hypten 82 3.30

## # NA % NA

## SBP 115 4.63

## WC 116 4.67

## chol 175 7.05

## HDL 175 7.05

## hypchol 175 7.05

## creat 184 7.41

## albu 184 7.41

## uricacid 185 7.45

## bili 188 7.57

## alc 627 25.25

## HyperMed 1606 64.68

44 / 161



5. Know your data
5.3. Correlations & patterns

A quick (and dirty) way to check for strong correlations between variables is:

# re-code all variables as numeric and calculate spearman correlation

Corr <- cor(sapply(NHANES, as.numeric),

use = "pairwise.complete.obs", method = "spearman")

## Warning in cor(sapply(NHANES, as.numeric), use =

"pairwise.complete.obs", : the standard deviation is zero

corrplot::corrplot(Corr, method = "square", type = "upper",

tl.col = "black")

Note: We only use the correlation coefficient for categorical variables for
visualization, not as a statistical result!
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5. Know your data
5.3. Correlations & patterns
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5. Know your data
5.3. Correlations & patterns

Check out what the problem is with hypertension and HyperMed:

table(hypertension = NHANES$hypten,

HyperMed = NHANES$HyperMed, exclude = NULL)

## HyperMed

## hypertension no previous yes <NA>

## no 0 0 0 1397

## yes 114 90 673 127

## <NA> 0 0 0 82
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5. Know your data
5.4. Why are values missing?

Knowing your data also means being able to answer these questions:

Do missing values in multiple variables always occur together?
(e.g. blood measurements)

Are there structural missing values? (e.g. pregnancy status in men)

Are there patterns in the missing values?
(e.g. only patients with hypertension have observations of HyperMed)

Are values missing by design?

Is the assumption of ignorable missingness (MAR or MCAR) justifiable?
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5. Know your data
5.5. Auxiliary variables

Auxiliary variables are variables that are not part of the analysis but can help
during imputation.

Good auxiliary variables [15]

are related to the probability of missingness in a variable, or

are related to the incomplete variable itself,

do not have many missing values themselves and

are (mostly) observed when the incomplete variable of interest is missing.
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6. Imputation with mice()
6.1. Main function arguments

The main arguments needed to impute data with mice() are:

data: the dataset

m: number of imputed datasets (default is 5)

maxit: number of iterations (default is 5)

method: vector of imputation methods

defaultMethod: vector of default imputation methods for numerical,
binary, unordered and ordered factors with > 2 levels
(default is c("pmm", "logreg", "polyreg", "polr"))

predictorMatrix: matrix specifying roles of variables
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6. Imputation with mice()
6.2. Imputation methods

mice has implemented many imputation methods, the most commonly used
ones are:

pmm: predictive mean matching (any)

norm: Bayesian linear regression (numeric)

logreg: binary logistic regression (binary)

polr: proportional odds model (ordered factors)

polyreg: polytomous logistic regression (unordered factors)
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6. Imputation with mice()
6.2. Imputation methods

Change the default imputation method:
Example: To use norm instead of pmm for all continuous incomplete variables,
use:

mice(NHANES, defaultMethod = c("norm", "logreg", "polyreg", "polr"))

Change imputation method for a single variable:
To change the imputation method for single variables (but also for changes in
other arguments) it is convenient to do a setup run of mice() without
iterations (maxit = 0) and to extract and modify the parameters from there.

Exclude variable from imputation:
When a variable that has missing values should not be imputed, the method
needs to be set to "".
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6. Imputation with mice()
6.2. Imputation methods

library("mice")

imp0 <- mice(NHANES, maxit = 0)

meth <- imp0$method

meth

## age gender race bili hgt wgt

## "" "" "" "pmm" "pmm" "pmm"

## chol HDL hypten hypchol DM smoke

## "pmm" "pmm" "logreg" "logreg" "" "polr"

## alc educ SBP creat albu uricacid

## "polr" "polyreg" "pmm" "pmm" "pmm" "pmm"

## WC occup HyperMed BMI

## "pmm" "polyreg" "polr" "pmm"

meth["albu"] <- "norm"

meth["HyperMed"] <- ""

# imp <- mice(NHANES, method = meth)
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6. Imputation with mice()
6.3. Predictor matrix

The predictorMatrix is a matrix that specifies which variables are used as
predictors in which imputation model.
Each row represents the model for the variable given in the rowname.

head(imp0$predictorMatrix)[, 1:11]

## age gender race bili hgt wgt chol HDL hypten hypchol DM

## age 0 1 1 1 1 1 1 1 1 1 1

## gender 1 0 1 1 1 1 1 1 1 1 1

## race 1 1 0 1 1 1 1 1 1 1 1

## bili 1 1 1 0 1 1 1 1 1 1 1

## hgt 1 1 1 1 0 1 1 1 1 1 1

## wgt 1 1 1 1 1 0 1 1 1 1 1

Variables not used as predictor are (or have to be set to) zero.

By default, all variables (except the variable itself) are used as predictors.
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6. Imputation with mice()
6.3. Predictor matrix

Important:
A variable that has missing values needs to be imputed in order to be used
as a predictor for other imputation models!!!

Note:
By default, ALL variables with missing values are imputed and ALL variables
are used as predictor variables.

á Make sure to adjust the predictorMatrix and method to avoid using ID
variables or other columns of the data that should not be part of the imputation.

á Make sure all variables are coded correctly, so that the automatically
chosen imputation models are appropriate.
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6. Imputation with mice()
6.3. Predictor matrix

library(mice)

# setup-run

imp0 <- mice(NHANES, maxit = 0,

defaultMethod = c("norm", "logreg", "polyreg", "polr"))

# adjust imputation methods

meth <- imp0$method

meth["educ"] <- "polr"

meth["HyperMed"] <- ""

# adjust predictor matrix

pred <- imp0$predictorMatrix

pred[, "HyperMed"] <- 0

# run imputation with adjusted settings

imp <- mice(NHANES, method = meth, predictorMatrix = pred,

printFlag = FALSE)
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6. Imputation with mice()
6.4. Passive imputation

In some cases, variables are functions of other variables, e.g., BMI = wgt
hgt2 .

If we impute BMI directly, its values may be inconsistent with the (imputed)
values of hgt and wgt.

DF1 <- complete(imp, 1) # select the first imputed dataset

round(cbind("wgt/hgt^2" = DF1$wgt/DF1$hgt^2,

BMI = DF1$BMI)[is.na(NHANES$BMI), ], 2)[1:5, ]

## wgt/hgt^2 BMI

## [1,] 23.87 25.91

## [2,] 28.75 27.95

## [3,] 23.73 21.67

## [4,] 25.25 24.95

## [5,] 27.43 26.58

The imputed values of BMI are impossible given the corresponding values of
hgt and wgt.
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6. Imputation with mice()
6.4. Passive imputation

Moreover, if some components of a variable are observed we want to use that
information to reduce uncertainty.

table(wgt_missing = is.na(NHANES$wgt),

hgt_missing = is.na(NHANES$hgt))

## hgt_missing

## wgt_missing FALSE TRUE

## FALSE 2410 33

## TRUE 28 12

Here we have 33 + 28 = 61 cases in which either hgt or wgt is observed.

We would like to impute hgt and wgt separately and calculate BMI from the
(imputed) values of the two variables.
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6. Imputation with mice()
6.4. Passive imputation

If BMI is not a relevant predictor in any of the other imputation models, we
could just exclude BMI from the imputation and re-calculate it afterwards.

To use BMI as predictor in the imputation, it has to be calculated in each
iteration of the algorithm. In mice this is possible with passive imputation.

Instead of using a standard imputation method, we can specify a formula to
calculate BMI:

meth["BMI"] <- "~I(wgt/hgt^2)" # formula to impute BMI

pred[c("wgt", "hgt"), "BMI"] <- 0 # prevent feedback

To prevent feedback from BMI in the imputation of hgt and wgt the
predictorMatrix needs to be modified.
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6. Imputation with mice()
6.4. Passive imputation

Since BMI depends on wgt, and the two variables are highly correlated
(ρ =0.87) it may be beneficial not to use them simultaneously as predictors
in the other imputation models.
Which one to use may differ between imputation models.

Passive imputation can also be useful in settings where

imputation models include interaction terms between incomplete
variables (see [15, p. 133] for an example), or when

a number of covariates is used to form a sum score. The sum score,
instead of all single elements, can then be used as predictor in other
imputation models.
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6. Imputation with mice()
6.5. Post processing

mice() has an argument post that can be used to specify functions that
modify imputed values.

Helpful functions are

squeeze() to censor variables at given boundaries

ifdo() for conditional manipulation (not yet implemented)

Example:
When inspecting the imputed values from imp, we find that some imputed
values in creat are negative.

# DF1 is the first imputed dataset we extracted earlier

summary(DF1$creat)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.2829 0.7000 0.8400 0.8882 0.9900 9.5100
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6. Imputation with mice()
6.5. Post processing

With the following syntax all imputed values of creat that are outside the
interval c(0, 100) will be set to those limiting values.

post <- imp$post

post["creat"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i], c(0, 100))"

imp2 <- update(imp, post = post, maxit = 20, seed = 123)

Note:
When many observations are outside the limits it may be better to change the
imputation model since the implied assumption of the imputation model
apparently does not fit the (assumption about the) complete data
distribution.
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6. Imputation with mice()
6.5. Post processing

This post-processing of imputed values allows for many more data
manipulations and is not restricted to squeeze() (and ifdo()).

Any strings of R commands provided will be evaluated after the corresponding
variable is imputed, within each iteration.

For example, if subjects with SBP > 140 should be classified as hypertensive:

post["hypten"] <- "imp[[j]][p$data[where[, j], 'SBP'] > 140, i] <- 'yes'"

This also allows for (some) MNAR scenarios, for example, by multiplying or
adding a constant to the imputed values, or to re-impute values depending on
their current value.

63 / 161



6. Imputation with mice()
6.6. Visit sequence

When the post-processed or passively imputed values of a variable depend
on other variables, the sequence in which the variables are imputed may be
important to obtain consistent values.

Example:
If BMI is passively imputed (calculated) before the new imputations for hgt and
wgt are drawn, the resulting values of BMI, will match hgt and wgt from the
previous iteration, but not the iteration given in the imputed dataset.

In mice() the argument visitSequence specifies in which order the columns
of the data are imputed. By default mice() imputes in the order of the
columns in data.
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6. Imputation with mice()
6.6. Visit sequence

visitSeq <- imp2$visitSequence

visitSeq

## [1] "age" "gender" "race" "bili" "hgt"

## [6] "wgt" "chol" "HDL" "hypten" "hypchol"

## [11] "DM" "smoke" "alc" "educ" "SBP"

## [16] "creat" "albu" "uricacid" "WC" "occup"

## [21] "HyperMed" "BMI"

Currently, hypten is imputed before SBP, but the imputed values of hypten are
post-processed depending on the current value of SBP. To get consistent values
of these two variables, we need to change the visitSequence.
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6. Imputation with mice()
6.6. Visit sequence

visitSeq <- c(visitSeq[-which(visitSeq == "hypten")],

"hypten")

visitSeq

## [1] "age" "gender" "race" "bili" "hgt" "wgt"

## [7] "chol" "HDL" "hypchol" "DM" "smoke" "alc"

## [13] "educ" "SBP" "creat" "albu" "uricacid" "WC"

## [19] "occup" "HyperMed" "BMI" "hypten"

The visitSequence may specify that a column is visited multiple times during
one iteration. All incomplete variables must be visited at least once.
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6. Imputation with mice()
6.7. Good to know

mice() performs some pre-processing and removes

incomplete variables that are not imputed but are specified as predictors,

constant variables, and

collinear variables.

In each iteration

linearly dependent variables are removed and

polr imputation models that do not converge are replaced by polyreg.

Why?
To avoid problems in the imputation models.
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6. Imputation with mice()
6.7. Good to know

As a consequence

imputation models may differ from what the user has specified or assumes
is happening, or

variables that should be imputed are not.

á Know your data

á Make sure method and predictorMatrix are specified appropriately

á Check the output and log of these automatic actions carefully

68 / 161



Practical

To practice the content of the previous section find the instructions for the
practical here:

https://nerler.com/teaching/fgme2019/mimice
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7. Convergence & diagnostics
7.1. Logged events

The log of the automatic changes is returned as part of the mids object:

demo <- NHANES[, 1:5]

demo$dupl <- demo[, 4]

demo$const <- 1

demo$age[demo$gender == 'male'] <- NA

demoimp <- mice(demo)

head(demoimp$loggedEvents)

## Warning: Number of logged events: 8

## it im dep meth out

## 1 0 0 constant const

## 2 0 0 collinear dupl

## 3 1 1 age pmm genderfemale

## 4 1 2 age pmm genderfemale

## 5 1 3 age pmm genderfemale

## 6 2 1 age pmm genderfemale

With columns

it iteration number
im imputation number
dep dependent variable
meth imputation method

used
out names of altered or

removed predictors
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7. Convergence & diagnostics
7.2. Convergence
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7. Convergence & diagnostics
7.2. Convergence

Strong trends and traces that show correlation between variables indicate
problems of feedback. This needs to be investigated and resolved in the
specification of the predictorMatrix.

Weak trends may be artefacts that often disappear when the imputation is
performed with more iterations.
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7. Convergence & diagnostics
7.3. Diagnostics

When MCMC chains have converged, the distributions of the imputed and
observed values can be compared to investigate differences between observed
and imputed data.

Note:
Plots usually show the marginal distributions of observed and imputed values,
which do not have do be identical under MAR.

Recall:
The conditional distributions (given all the other variables in the imputation
model) of the imputed values are assumed to be the same as the conditional
distributions of the observed data.
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7. Convergence & diagnostics
7.3. Diagnostics

mice provides several functions for visual diagnosis of imputed values:

densityplot() (for large datasets and variables with many NAs)

stripplot() (for smaller datasets and/or variables with few NAs)

bwplot()

xyplot()

These functions create lattice graphics, which can be modified analogously to
their parent functions from the lattice package.
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7. Convergence & diagnostics
7.3. Diagnostics

densityplot(imp2)
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7. Convergence & diagnostics
7.3. Diagnostics

The densityplot() shows that the distribution of imputed values of creat is
wider than the distribution of the observed values and that imputed values of
hgt are smaller than the observed values.
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7. Convergence & diagnostics
7.3. Diagnostics

In some cases, differences in distributions can be explained by strata in the
data, however, here, gender does not explain the difference in observed and
imputed values.

densityplot(imp2, ~hgt|gender, plot.points = TRUE)
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7. Convergence & diagnostics
7.3. Diagnostics

For (combinations of) variables with very few missing values a stripplot()
may be better suited. Here we can also split the data for gender and race.

stripplot(imp2, hgt ~ race|gender, pch = c(1, 20),

scales = list(x = list(rot = 45)))
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7. Convergence & diagnostics
7.3. Diagnostics

The function xyplot() allows multivariate investigation of the imputed versus
observed values.

xyplot(imp2, hgt ~ chol|gender, pch = c(1,20))
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7. Convergence & diagnostics
7.3. Diagnostics

All of the above graphs displayed only continuous imputed variables.
For categorical variables we can compare the proportion of values in each
category.

mice does not provide a function to do this, but we can write one ourselves, as
for instance the function propplot(), for which the syntax can be found here:
https://gist.github.com/NErler/0d00375da460dd33839b98faeee2fdab
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7. Convergence & diagnostics
7.3. Diagnostics

propplot(imp2, strip.text = element_text(size = 14))
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7. Convergence & diagnostics
7.3. Diagnostics

smoke and educ have very few missing values (4 and 1, respectively), so we do
not need to worry about differences between observed and imputed data for
those variables.

alc: missing values are imputed in the lower consumption categories more
often than we would expect from the observed data

hypten is less frequent and

hypchol a bit more frequent, in the imputed data compared to the
observed.

If we expect that gender and race might explain the differences for alc, we
can include those factors into the plot.
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7. Convergence & diagnostics
7.3. Diagnostics

propplot(imp2, formula = alc ~ race + gender)
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7. Convergence & diagnostics
7.3. Diagnostics

Since hypertension is more common in older individuals, we may want to
investigate if age can explain the differences in imputed values of hypten.

round(sapply(split(NHANES[, "age"], addNA(NHANES$hypten)), summary), 1)

## no yes <NA>

## Min. 20.0 20.0 20.0

## 1st Qu. 28.0 47.0 30.0

## Median 38.0 59.0 38.5

## Mean 40.7 56.9 41.5

## 3rd Qu. 51.0 68.0 50.8

## Max. 79.0 79.0 78.0

The table shows that the distribution of age in participants with missing
hypten is very similar to the distribution of age in participants without hypten.
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7. Convergence & diagnostics
7.3. Diagnostics

Plotting the proportions of observed and imputed hypten separately per
quartile of age:

propplot(imp2, formula = hypten ~ cut(age, quantile(age), include.lowest = T))
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Practical

To practice the content of the previous section find the instructions for the
practical here:

https://nerler.com/teaching/fgme2019/micheck
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8. Analyse & pool the imputed data
8.1. Analysing imputed data

Once we have confirmed that our imputation was successful, we can move on
to the analysis of the imputed data.

For example, we might be interested in the following logistic regression model:

glm(DM ~ age + gender + hypchol + BMI + smoke + alc,

family = "binomial")

To fit the model on each of the imputed datasets, we do not need to extract
the data from the mids object, but can use with().

mod1 <- with(imp2, glm(DM ~ age + gender + hypchol + BMI + smoke + alc,

family = "binomial"))

mod1 is an object of class mira.
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8. Analyse & pool the imputed data
8.2. Pooling results

Pooled results can be obtained using pool() and its summary.

res1 <- summary(pool(mod1), conf.int = TRUE)

round(res1, 3)

## estimate std.error statistic df p.value 2.5 % 97.5 %

## (Intercept) -7.484 0.404 -18.520 2146.569 0.000 -8.277 -6.692

## age 0.056 0.004 12.698 1363.291 0.000 0.047 0.065

## genderfemale -0.424 0.127 -3.349 2333.764 0.001 -0.673 -0.176

## hypcholyes 0.009 0.201 0.043 87.509 0.966 -0.392 0.409

## BMI 0.105 0.009 11.509 2440.963 0.000 0.087 0.123

## smoke.L 0.063 0.116 0.545 2401.105 0.586 -0.165 0.291

## smoke.Q -0.075 0.115 -0.650 2409.227 0.515 -0.300 0.151

## alc.L -0.562 0.165 -3.402 197.275 0.001 -0.887 -0.236

## alc.Q 0.182 0.189 0.963 50.461 0.340 -0.197 0.560

## alc.C 0.017 0.188 0.089 49.989 0.930 -0.361 0.395

## alc^4 -0.045 0.206 -0.217 45.455 0.829 -0.460 0.371
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8. Analyse & pool the imputed data
8.2. Pooling results

Pooling with mice::pool() is available for most types of models.

It extracts the model coefficients and variance-covariance matrices using
tidy() from the package broom. Hence, pooling using the pool() function
from mice only works for models of classes for which a method tidy() exists.

An alternative is offered by the package mitools and the function
MIcombine().
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8. Analyse & pool the imputed data
8.3. Functions for pooled results

mice currently has two functions available for evaluating model fit / model
comparison

For linear regression models the pooled R2 can be calculated using
pool.r.squared().

mod2 <- with(imp2, lm(SBP ~ DM + age + hypten))

pool.r.squared(mod2, adjusted = TRUE)

## est lo 95 hi 95 fmi

## adj R^2 0.3252735 0.2943749 0.3562265 NaN

The argument adjusted specifies whether the adjusted R2 or the standard R2

is returned.
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8. Analyse & pool the imputed data
8.3. Functions for pooled results

The function pool.compare() allows comparison of nested models (i.e.,
models where one is a special case of the other, with some parameters fixed to
zero) using a Wald test.

Example: To test if smoke has a relevant contribution to the model for DM
from above we re-fit the model without smoke and compare the two models:

mod3 <- with(imp2, glm(DM ~ age + gender + hypchol + BMI + alc,

family = "binomial"))

# Wald test

pool.compare(mod1, mod3)$pvalue

## [,1]

## [1,] 0.6978098

anova() allows comparison of multiple nested models
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8. Analyse & pool the imputed data
8.3. Functions for pooled results

The package miceadds extends mice, for example with the following
functionality:

Combine χ2 or F statistics from multiply imputed data:

miceadds::micombine.chisquare(dk, df, ...)

miceadds::micombine.F(values, df1, ...)

These functions take vectors of statistics computed on each imputed dataset
and pool them.

Calculate correlation or covariance of imputed data:

miceadds::micombine.cor(mi.res, ...)

miceadds::micombine.cov(mi.res, ...)

These functions take mids objects as input.
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9. Additional functions in mice()
9.1. Extract & export imputed data

The function complete() allows extraction of the imputed data from a
mids object:

mice::complete(data, action = 1, include = FALSE, ...)

data: the mids object

action:

1, . . . , m (single imputed dataset)
"long": long format (imputed data stacked vertically)
"broad": wide format (imputed data combined horizontally;

ordered by imputation)
"repeated": (like "broad", but ordered by variable)

include: include the original data?
(if action is "long", "broad" or "repeated")
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9. Additional functions in mice()
9.1. Extract & export imputed data

The function mids2spss() allows the export of imputed data (mids objects)
to SPSS.

mids2spss(imp2,

filedat = "datafile.txt", # the file containing the data

filesps = "importsyntax.sps", # syntax to get .sav from .txt

silent = TRUE, ...

)

Data from mids objects can also be exported to MPLUS using mids2mplus().
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9. Additional functions in mice()
9.2. Combining mids objects

To increase the number of imputed datasets without re-doing the initial m
imputations, a second set of imputations can be done and the two mids objects
combined using ibind().

# same syntax as before, but different seed

imp2b <- update(imp2, post = post, maxit = 20, seed = 456)

imp2combi <- ibind(imp2, imp2b)

# check the new number of impute datasets:

imp2combi$m

## [1] 10
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Part III

When MICE might fail
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10. Settings where MICE may have problems
10.1. Quadratic effect

Consider the case where the analysis model (which we assume to be true) is

y = β0 + β1x + β2x2 + . . . ,

i.e., y has a quadratic relationship with x , and x is incomplete.
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10. Settings where MICE may have problems
10.1. Quadratic effect

The model used to impute x when using MICE (naively) is

x = θ10 + θ11y + . . . ,

i.e., a linear relation between x and y is assumed.
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10. Settings where MICE may have problems
10.1. Quadratic effect

The model fitted on the imputed data gives severely biased results; the
non-linear shape of the curve has almost completely disappeared.
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β 95% CI

Original
Intercept -0.99 [-1.04, -0.95]
x -0.61 [-0.66, -0.56]
x2 0.52 [0.43, 0.62]

Imputed
Intercept -0.73 [-0.79, -0.66]
x -0.53 [-0.62, -0.44]
x2 0.07 [-0.07, 0.22]
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10. Settings where MICE may have problems
10.2. Interaction effect

Another example occurs when the analysis model (again, assumed to be true) is

y = β0 + βxx + βzz + βxzxz + . . . ,

i.e., y has a non-linear relationship with x due to the interaction term.
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10. Settings where MICE may have problems
10.2. Interaction effect

The model used to impute x when using MICE (naively) is

x = θ10 + θ11y + θ12z + . . . ,

i.e., a linear relation between x and y is assumed.
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10. Settings where MICE may have problems
10.2. Interaction effect

And the analysis on these naively imputed values leads to severely biased
estimates.

x

y

missing (z = 0)
missing (z = 1)
observed (z = 0)
observed (z = 1)
imputed (z = 0)
imputed (z = 1)

 true
 imputed

β 95% CI

Original
Intercept -0.96 [-1.00, -0.92]
x -0.59 [-0.65, -0.53]
z 0.5 [0.45, 0.56]
x:z 0.94 [0.85, 1.03]

Imputed
Intercept -0.96 [-1.01, -0.91]
x -0.52 [-0.61, -0.44]
z 0.46 [0.39, 0.54]
x:z 0.37 [0.24, 0.51]
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10. Settings where MICE may have problems
10.3. Longitudinal outcome

Another setting where imputation with MICE is not straightforward is when the
outcome variable is longitudinal.
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ID y x1 x2 x3 x4 time

5 X X X NA X 0.43
5 X X X NA X 2.12
5 X X X NA X 4.37
5 X X X NA X 6.02
6 X X NA NA X 2.91
6 X X NA NA X 4.40
6 X X NA NA X 6.71
8 X X X X NA 0.64
8 X X X X NA 2.09
8 X X X X NA 4.52
8 X X X X NA 6.12
8 X X X X NA 8.93

18 X X NA X X 0.11
18 X X NA X X 6.51
18 X X NA X X 8.37
...

...
...

...
...

...
...

Here, x1, . . . , x4 are baseline covariates, i.e., not measured repeatedly (e.g. age
at baseline, gender, education level, . . .
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10. Settings where MICE may have problems
10.3. Longitudinal outcome

If we use MICE in the data in this (long) format, each row would be regarded
as independent, which may cause bias and inconsistent imputations.

Imputed values of baseline covariates
are imputed with different values,
creating data that could not have been
observed.

ID y x1 x2 x3 x4 time

5 X X X low X 0.43
5 X X X mid X 2.12
5 X X X high X 4.37
5 X X X low X 6.02
6 X X boy low X 2.91
6 X X boy high X 4.40
6 X X boy low X 6.71
8 X X X X 39.75 0.64
8 X X X X 39.64 2.09
8 X X X X 41.41 4.52
8 X X X X 39.58 6.12
8 X X X X 40.37 8.93

18 X X boy X X 0.11
18 X X girl X X 6.51
18 X X girl X X 8.37
...

...
...

...
...

...
...
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10. Settings where MICE may have problems
10.3. Longitudinal outcome
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10. Settings where MICE may have problems
10.3. Longitudinal outcome

In some settings imputation in wide format may be possible.
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10. Settings where MICE may have problems
10.3. Longitudinal outcome

In some settings imputation in wide format may be possible.
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10. Settings where MICE may have problems
10.3. Longitudinal outcome

id y.1 y.3 y.5 y.7 y.9 time.1 time.3 time.5 time.7 time.9 . . .

5 33.57 33.87 33.98 33.83 NA 0.43 2.12 4.37 6.02 NA . . .
6 NA 34.96 34.92 35.05 NA NA 2.91 4.4 6.71 NA . . .
8 33.92 34.07 34.04 33.96 35.04 0.64 2.09 4.52 6.12 8.93 . . .
18 33.05 NA NA 32.5 32.76 0.11 NA NA 6.51 8.37 . . .
...

...
...

...
...

...
...

...
...

...
...

. . .

In this wide format data frame, missing values in the outcome and
measurement times need to be imputed (to be able to use them as predictors to
impute covariates), even though we would not need to impute them for the
analysis (mixed model is valid when outcome measurements are M(C)AR).
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10. Settings where MICE may have problems
10.3. Longitudinal outcome
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10. Settings where MICE may have problems
10.3. Longitudinal outcome
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format leads to
variables with high
proportions of missing
values.)
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10. Settings where MICE may have problems
10.3. Longitudinal outcome
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resulting in invalid imputations
and biased results.
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10. Settings where MICE may have problems
10.3. Longitudinal outcome
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Naive approaches that are
sometimes used are to

ignore the outcome in
the imputation, or to

use only the first/baseline
outcome

However, important
information may be lost,
resulting in invalid imputations
and biased results.
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11. Requirements for MICE to work (well)
11.1. Joint and conditional distributions

The MICE algorithm is based on the idea of Gibbs sampling.

Gibbs sampling exploits the fact that a joint distribution is fully determined by
its full conditional distributions.

joint
distribution

Gibbs

MICE

full
conditionals

In MICE, the full conditionals are not derived from the joint distribution:
we directly specify the full conditionals and hope a joint distribution exists.
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11. Requirements for MICE to work (well)
11.2. Some conditions and definitions

Two important definitions:

Compatibility:

A joint distribution exists, that has the full conditionals (imputation
models) as its conditional distributions.

Congeniality:
The imputation model is compatible with the analysis model.
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11. Requirements for MICE to work (well)
11.2. Some conditions and definitions

Important requirements for MICE to work well include:

Compatibility

Congeniality

MAR or MCAR (in the standard implementations)

All relevant variables need to be included. (Omission might result in
MNAR.)

The outcome needs to be included as predictor variable
(but we usually do not impute missing outcome values).

The imputation models (and analysis model) need to be correctly
specified (which is a requirement in any standard analysis).
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12. Alternatives to MICE
12.1. Joint model imputation

To avoid incompatible and uncongenial imputation models, we need to

specify the joint distribution

and derive full conditionals / imputation models from this joint distribution

instead of specifying them directly.

Problem:
The joint distribution may not be of any known form:

x1 ∼ N(µ1, σ
2
1)

x2 ∼ N(µ2, σ
2
2)

⇒
(

x1

x2

)
∼ N

([
µ1

µ2

]
,

[
σ2

1 σ12

σ12 σ2
2

])

but
x1 ∼ N(µ1, σ

2
1)

x2 ∼ Bin(µ2)
⇒

(
x1

x2

)
∼???
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12. Alternatives to MICE
12.1. Joint model imputation

Possible approaches:

Approach 1: Multivariate Normal Model
Approximate the joint distribution by a known multivariate distribution (usually
the normal distribution; this is the joint model MI mentioned before).

Approach 2: Sequential Factorization
Factorize the joint distribution into a (sequence of) conditional and a marginal
distributions.
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12. Alternatives to MICE
12.2. Sequential Factorization

The joint distribution of two variables y and x can be written as the product
of conditional distributions:

p(y , x) = p(y | x) p(x)

(or alternatively p(y , x) = p(x | y) p(y))

This can easily be extended for more variables:

p(y , x1, . . . , xp,Xc) = p(y | x1, . . . , xp,Xc)︸ ︷︷ ︸
analysis model

p(x1 | x2, . . . , xp,Xc) . . . p(xp | Xc)

where x1, . . . , xp denote incomplete covariates and Xc contains all completely
observed covariates.
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12. Alternatives to MICE
12.2. Sequential Factorization

The analysis model is part of the specification of the joint distribution.
á Advantages:

The outcome is automatically included in the imputation procedure.

The outcome does not appear in any of the predictors of the imputation
models:

no need to approximate complex outcomes,
no need to summarize complex outcomes.

The parameters of interest are obtained directly
á imputation and analysis in one step

Non-linear associations or interactions involving incomplete covariates
are specified in the analysis model and thereby automatically taken into
account

Since the joint distribution usually does not have a known form, Gibbs sampling
is used to estimate parameters and sample imputed values.
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12. Alternatives to MICE
12.3. R package JointAI

Joint Analysis and Imputation,
uses the sequential factorization approach to perform simultaneous analysis
and imputation in the Bayesian framework [4, 5, 3].

JointAI (version 0.6.0) can analyse incomplete data using

linear regression

generalized linear
regression

linear mixed models

generalized linear mixed
models

(ordinal) cumulative logit regression

(ordinal) cumulative logit mixed models

parametric (Weibull) survival models

Cox proportional hazards models

while assuring compatibility between analysis model and imputation models
when non-linear functions or interactions are included.
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12. Alternatives to MICE
12.3. R package JointAI

The necessary Gibbs sampling is performed using JAGS (an external
program), which is free, but needs to be installed from
https://sourceforge.net/projects/mcmc-jags/files/.

JointAI can be installed from CRAN or GitHub:

install.packages("devtools")

devtools::install_github("NErler/JointAI")

JointAI has its own web page (https://nerler.github.io/JointAI/) with several
vignettes on Visualization of Incomplete Data, a Minimal Example, details on
Model Specification, etc.
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13. Imputation with non-linear functional forms
13.1. With mice

There is no strategy for MICE that can guarantee valid imputations when
non-linear functional forms and/or interactions are involved, but some settings
in mice may help to reduce bias in the resulting estimates.

For imputation of variables that have non-linear associations

PMM often works better than imputation with a normal model,

the Just Another Variable approach can reduce bias in interactions,

quadratic can help to impute variables with quadratic association.
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13. Imputation with non-linear functional forms
13.1. With mice

Just Another Variable (JAV) approach:

pre-calculate the non-linear form (or interaction term) in the incomplete
data,

add it as a column to the dataset, and

impute it as if it was just another variable.

quadratic uses the “polynomial combination” method to impute covariates
that have a quadratic association with the outcome [15, pp. 139–141], [16].

This is to ensure the imputed values for x and x2 are consistent, and to reduce
bias in the subsequent analysis that uses x and x2.

In my experience, using quadratic can lead to numerical problems.
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13. Imputation with non-linear functional forms
13.1. With mice

To demonstrate the approaches, we use a simulated example dataset DFnonlin,
with

continuous outcome y

continuous (normal) covariate x (50% missing values MCAR)

quadratic effect of x on y

binary covariate z (complete)

interaction between x and z

In the naive approach, we leave all settings to the defaults.

# naive imputation, using only y, x, z

impnaive <- mice(DF_nonlin, printFlag = F)
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13. Imputation with non-linear functional forms
13.1. With mice

We use two different JAV approaches:

JAV: calculating the quadratic and interaction term before imputation

# add quadratic term and interaction to data

DF2 <- DF_nonlin

DF2$xx <- DF2$x^2

DF2$xz <- DF2$x * DF2$z

# JAV imputation

impJAV <- mice(DF2, printFlag = F, maxit = 20)

JAV2: additionally using an interaction between z and y

# add interaction between y and z to data

DF3 <- DF2

DF3$yz <- DF3$y * DF3$z

# JAV imputation with additional interaction

impJAV2 <- mice(DF3, printFlag = F, maxit = 20)
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13. Imputation with non-linear functional forms
13.1. With mice

We also try using imputation method quadratic.

# adapt the imputation method for quadratic imputation

methqdr <- impJAV$meth

methqdr[c("x", "xx", "xz")] <- c("quadratic", "~I(x^2)", "~I(x*z)")

# adapt the predictor matrix

predqdr <- impJAV$pred

predqdr[, "xx"] <- 0

impqdr <- mice(DF2, meth = methqdr, pred = predqdr,

printFlag = F, maxit = 10)

Note: there were warning messages about numerical issues for this approach
(glm.fit: fitted probabilities numerically 0 or 1 occurred).
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13. Imputation with non-linear functional forms
13.1. With mice
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For this example, none of the approaches provided satisfying results.
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13. Imputation with non-linear functional forms
13.2. With JointAI

The syntax we use to analyse and impute the current example using JointAI is
similar to the specification of a standard linear model using lm().

library(JointAI)

JointAI_nonlin <- lm_imp(y ~ x*z + I(x^2), data = DF_nonlin,

n.iter = 2500)

Convergence of the Gibbs sampler can be checked using a traceplot.

traceplot(JointAI_nonlin, ncol = 3)

Results (no separate analysis & pooling is necessary) can be obtained with the
summary() function:

summary(JointAI_nonlin)
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13. Imputation with non-linear functional forms
13.2. With JointAI
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13. Imputation with non-linear functional forms
13.2. With JointAI

##

## Linear model fitted with JointAI

##

## Call:

## lm_imp(formula = y ~ x * z + I(x^2), data = DF_nonlin, n.iter = 2500)

##

## Posterior summary:

## Mean SD 2.5% 97.5% tail-prob. GR-crit

## (Intercept) -0.131 0.0691 -0.265 0.00445 0.0589 1.02

## x 0.958 0.0677 0.822 1.08954 0.0000 1.00

## z1 1.003 0.0977 0.812 1.19210 0.0000 1.02

## I(x^2) 1.023 0.0378 0.950 1.09735 0.0000 1.05

## x:z1 0.956 0.1132 0.735 1.17537 0.0000 1.04

##

## Posterior summary of residual std. deviation:

## Mean SD 2.5% 97.5% GR-crit

## sigma_y 0.506 0.0337 0.445 0.577 1

##

##

## MCMC settings:

## Iterations = 101:2600

## Sample size per chain = 2500

## Thinning interval = 1

## Number of chains = 3

##

## Number of observations: 200
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13. Imputation with non-linear functional forms
13.2. With JointAI
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Practical

To practice imputation with non-linear forms or interaction terms find the
instructions for the practical here:

https://nerler.com/teaching/fgme2019/minonlin
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14. Imputation of longitudinal data
14.1. R package mice

mice has functions to allow imputation of longitudinal (2-level) data:

Level 1:
repeated measurements within subjects or subjects within classes

Level 2:
time-constant/baseline covariates, between subjects effects, variables on
the group level

Imputation methods for level-1
variables:

2l.pan

2l.norm

2l.lmer

2l.bin

Imputation methods for level-2
variables:

2lonly.norm

2lonly.pmm

2lonly.mean
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14. Imputation of longitudinal data
14.1. R package mice

2l.pan uses a linear two-level model with homogeneous within group
variances using Gibbs sampling [13]. It needs the package pan to be installed.

2l.pan allows for different roles of predictor variables, that can be specified as
different values in the predictorMatrix:

grouping/ID variable: -2

random effects (also included as fixed effects): 2

fixed effects of group means: 3

fixed effects of group means & random effects: 4

# random effects of x in model for y

pred["y","x"] <- 2

# fixed effects of x and group mean of x

pred["y","x"] <- 3

# random effects of x and group mean of x

pred["y","x"] <- 4
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14. Imputation of longitudinal data
14.1. R package mice

2l.norm implements a (Bayesian) linear two-level model with heterogenous
group variances.
In the current implementation all predictors should be specified as random
effects (set to 2 in the predictorMatrix, because the algorithm does not
handle predictors that are specified as fixed effects).

2l.lmer/2l.bin imputes univariate systematically and sporadically missing
data using a two-level normal/logistic model using lmer()/glmer() from
package lme4.

2lonly.norm and 2lonly.pmm can be used to impute level-2 variables (in
combination with 2l.pan for level-1 variables).

In all cases, the group identifier (”id” variable) needs to be set to -2 in the
predictorMatrix.
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14. Imputation of longitudinal data
14.1. R package mice

2lonly.mean imputes values with the mean of the observed values per class.
This method should only be used to fill in values that are known to be constant
per class and have some values observed in each class.

Example: In a multi-center trial the type of some medical equipment is known
to be the same for all patients treated in the same hospital, but not filled in for
some patients.
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14. Imputation of longitudinal data
14.1. R package mice

As an example, we will impute the second (unbalanced) longitudinal data
example from above. The data contain

x1 (complete)

x2 (binary, 30% missing values)

x3 (3 categories, 30% missing values)

x4 (continuous/normal, 30% missing values)

y (longitudinal outcome)

time (time variable with quadratic effect)

id (id variable)

Since there is no 2-level method for categorical data, we use 2lonly.pmm to
impute x2 and x3.
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14. Imputation of longitudinal data
14.1. R package mice

As usual, we start with the setup run of mice()

imp0 <- mice(DFexlong2, maxit = 0)

meth <- imp0$method

pred <- imp0$predictorMatrix

and adjust the imputation method and predictorMatrix

meth[c("x2", "x3")] <- "2lonly.pmm"

meth[c("x4")] <- "2lonly.norm"

pred[, "id"] <- -2 # identify id variable

pred[, "ti"] <- 0 # don't use time-point indicator

We can then perform the imputation.

imp <- mice(DFexlong2, maxit = 10, method = meth,

predictorMatrix = pred, printFlag = FALSE)
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14. Imputation of longitudinal data
14.1. R package mice

The imputed data can be analysed using either lmer() from the package lme4,
or lme() from nlme. Here we use the former.

library(lme4)

models <- with(imp, lmer(y ~ x1 + x2 + x3 + x4 + time + I(time^2) +

(time|id),

control = lmerControl(optimizer = "Nelder_Mead")

))

mice_longimp <- summary(pool(models), conf.int = TRUE)
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14. Imputation of longitudinal data
14.2. R package JointAI

Linear mixed models with incomplete covariates can also be analysed using the
package JointAI.

The syntax is analogous the syntax used in lme() of the package nlme.

library(JointAI)

JointAI_long <- lme_imp(y ~ x1 + x2 + x3 + x4 + time + I(time^2),

random = ~time|id, data = DFexlong2,

n.iter = 5000)

Again, convergence of the Gibbs sampler should be checked, e.g., using
traceplot() before obtaining the results.
Contrary to the two-level imputation of mice, non-linear associations are
appropriately handled.
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14. Imputation of longitudinal data
14.3. Comparison of results
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Practical

To practice imputation with longitudinal data find the instructions for the
practical here:

https://nerler.com/teaching/fgme2019/milong
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Part IV

Multiple Imputation Strategies
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15. Strategies for using MICE
15.1. Tips & Tricks

In complex settings, variables may need to be re-calculated or re-coded after
imputation:

Use complete() to convert the imputed data from a mids object to a
data.frame.

Perform the necessary calculations.

Convert the changed data.frame back to a mids object using the
functions such as as.mids(), miceadds::datalist2mids(),
mitools::imputationList(), . . .

Not just in imputation: Set a seed value to create reproducible results.

in R: set.seed()

in mice(): argument seed
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15. Strategies for using MICE
15.2. Number of imputed datasets

Early publications on multiple imputation suggested that 3 – 5 imputations
are sufficient and this is still a common assumption in practice.[11]

The reasoning behind using a small number of imputed datasets was that
storage of imputed data was “expensive” (which is no longer the case) and
a larger number of imputations would only have little advantage.[12]

More recent work from various authors [18, 15, 6] considers the efficiency of
the pooled estimates, reproducibility of the results, statistical power of tests or
the width of the resulting confidence intervals compared to the width of the
true confidence intervals.
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15. Strategies for using MICE
15.2. Number of imputed datasets

A suggested rule of thumb is that the number of imputed datasets should
be similar to the percentage of incomplete cases.[18] Since this percentage
depends on the size of the dataset, the average percentage of missing values
per variable could be used as an alternative.[15]

Generally, using more imputed datasets should be preferred, especially in
settings where the computational burden allows for it. Even though results are
unlikely to change with a larger number of imputations, it can increase the
efficiency and reproducibility of the results.
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15. Strategies for using MICE
15.3. What to do with large datasets?

In imputation, generally the advice is to include as much information as
possible in the imputation models.

Using a large number of predictor variables

makes the MAR assumption more plausible (and, hence, reduces bias
due to MNAR missingness)

can reduce uncertainty about the missing values

This can work well in small or medium sized datasets (20 – 30 separate
variables, i.e. without interactions, variables derived from others, . . . )

However, in large datasets (contain hundreds or thousands of variables) this is
not feasible.[15]
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15. Strategies for using MICE
15.3. What to do with large datasets?

For large datasets a possible strategy is to

Include all variables used in the analysis model(s) (including the
outcome!).

Include auxiliary variables if they are strong predictors of missingness.

Include auxiliary variables if they have strong associations with the
incomplete variables.

Use auxiliary variables only if they do not have too many missing
values themselves (and are observed for most of the incomplete cases of
the variable of interest).

Use auxiliary variables only in those imputation models for which they are
relevant (and exclude them for others using the predictor matrix).

Calculate summary scores from multiple items referring to the same
concept and use the summary score as predictor variable.
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15. Strategies for using MICE
15.4. How much missing is too much?

There is no clear cut-off for the proportion of missing values that can be
handled adequately using MICE (or any other imputation method).

The amount of missingness that can be handeled depends on the information
that is available to impute it.

Are there strong predictor variabels available & observed?

Are there sufficient observed cases to get reliable estimates for the
predictive distribution?

Example:

In a set of N = 50 cases, 50% missing values leaves 25 cases to estimate
the parameters of the predictive distribution.

In a large set of N = 5000 subjects, 50% missing cases leaves 2500
observed cases to estimate parameters.
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15. Strategies for using MICE
15.5. Imputation of outcomes

Usually, missing outcome values are not imputed.

Why?
When there are no auxiliary variables, imputation and analysis model are equal.

Parameters of the imputation model are estimated on observed cases of
the outcome.

Imputed values will fit the assumed model perfectly.

Including imputed cases in the analysis does not add any information.

Exception:

When very strong auxiliary variables are available.

Outcomes may be imputed when one imputation is performed for several
analysis models, because not imputing the outcome(s) would mean

excluding cases with missing outcome(s) from the imputation, or
excluding the outcome variable(s) as predictor(s).
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15. Strategies for using MICE
15.6. Notes of caution & things to keep in mind

Multiple imputation is not a quick and easy solution for missing data. It
requires care and knowledge about

the data to be imputed (and the context of the data),

the statistical method used for imputation, and

the software implementation used.

Moreover

Never accept default settings of software blindly.

Question the plausibility of the MAR assumption. If it is doubtful, use
sensitivity analysis.
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15. Strategies for using MICE
15.6. Notes of caution & things to keep in mind

Remember:

Use as much information as possible
include all covariates and the outcome
use auxiliary information
use the most detailed version of variables if possible

Avoid feedback from derived variables to their originals.

Think carefully how to handle variables that are derived from other
variables.

Consider the impact the visit sequence may have.

Imputation models must fit the data
(correct assumption of error distribution and functional forms and possible
interactions of predictor variables).

Choose an appropriate number of imputations.

Make sure the imputation algorithm has converged.

Use common sense when evaluating if the imputed values are plausible.
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16. Imputation Software
16.1. R packages dealing with incomplete data

Currently, there are 289 packages available on CRAN that use the word
“missing” in either the title or description of the package, 163 that use either
“impute” or “imputation” and 65 that use the word “incomplete”.

á The mice package is often a good option, but certainly not the only
option to perform imputation!

CRAN Task View on Missing Data:
https://cran.r-project.org/web/views/MissingData.html

overview on the available R packages for missing data

good starting point when searching for a package with a particular
functionality
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16. Imputation Software
16.2. Imputation methods

We have focussed on a few imputation methods that cover the most common
types of data but there are many more methods implemented.

Imputation methods implemented in the mice package:

mice.impute.2l.bin mice.impute.lda mice.impute.panImpute
mice.impute.2l.lmer mice.impute.logreg mice.impute.passive
mice.impute.2l.norm mice.impute.logreg.boot mice.impute.pmm
mice.impute.2l.pan mice.impute.mean mice.impute.polr
mice.impute.2lonly.mean mice.impute.midastouch mice.impute.polyreg
mice.impute.2lonly.norm mice.impute.norm mice.impute.quadratic
mice.impute.2lonly.pmm mice.impute.norm.boot mice.impute.rf
mice.impute.cart mice.impute.norm.nob mice.impute.ri
mice.impute.jomoImpute mice.impute.norm.predict mice.impute.sample

Note: Just because a method is implemented does not mean you
need to / should use it.
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16. Imputation Software
16.2. Imputation methods

Imputation methods implemented in the miceadds package:

mice.impute.2l.binary mice.impute.hotDeck
mice.impute.2l.contextual.norm mice.impute.lm
mice.impute.2l.contextual.pmm mice.impute.lm fun
mice.impute.2l.continuous mice.impute.lqs
mice.impute.2l.groupmean mice.impute.ml.lmer
mice.impute.2l.groupmean.elim mice.impute.plausible.values
mice.impute.2l.latentgroupmean.mcmc mice.impute.pls
mice.impute.2l.latentgroupmean.ml mice.impute.pmm3
mice.impute.2l.plausible.values mice.impute.pmm4
mice.impute.2l.pls mice.impute.pmm5
mice.impute.2l.pls2 mice.impute.pmm6
mice.impute.2l.pmm mice.impute.rlm
mice.impute.2lonly.function mice.impute.smcfcs
mice.impute.2lonly.norm2 mice.impute.tricube.pmm
mice.impute.2lonly.pmm2 mice.impute.tricube.pmm2
mice.impute.bygroup mice.impute.weighted.norm
mice.impute.grouped mice.impute.weighted.pmm
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16. Imputation Software
16.2. Imputation methods

Imputation methods implemented in the micemd package:

mice.impute.2l.2stage.bin mice.impute.2l.glm.bin
mice.impute.2l.2stage.norm mice.impute.2l.glm.norm
mice.impute.2l.2stage.pmm mice.impute.2l.glm.pois
mice.impute.2l.2stage.pois mice.impute.2l.jomo
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16. Imputation Software
16.3. Additional packages worth mentioning

Besides JointAI, there are more alternatives for imputation in complex settings:

smcfcs: substantive model compatible fully conditional specification (in
GLMs & survival models)

jomo: Joint model MI (GLMs, GLMMs, Cox, ordinal mixed model)

mdmb: model based missing data models (linear, logistic, multi-level)
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